# Green Metrics: Real-Life Tools & Case Study from Fragrance Industry

#### Goal of the course

Provide a comprehensive perspective of the green metrics developed, used in the chemical industries. The pros/cons and the limitations of all these metrics will be shown as well as the different need between industries. The case of Perfumery industry will be specially emphasized.

#### Course Syllabus

- Green Chemistry & Sustainability
- Presentation of the different metrics
- Pros/Cons & Limitations
- What is the purpose of these metrics?
- Presentation of different methodologies
- Difference between the pharma industry and Perfumery industry
- Example in the Perfumery industry: Ecoscent Compass, Green Motion or Estée Lauder Companies

<u>fabrice.robvieux@firmenich.com</u> Senior Scientist, dsm-firmenich

www.dsm-firmenich.com

Green Chemistry, Sustainable Chemistry? Why?

Boundaries? Limits? System Thinking?

Metric(s)?

How many?

What kind?

Data Availability? Accuracy?

Why are they needed?

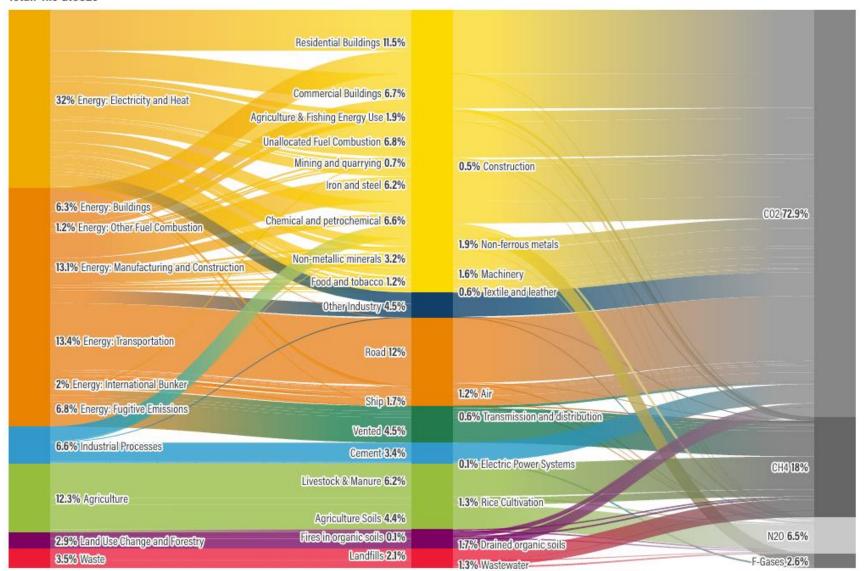
What's next?

Sustainable Development Goal (2015-2030)? After 2030?

What are the Potential Pitfalls?

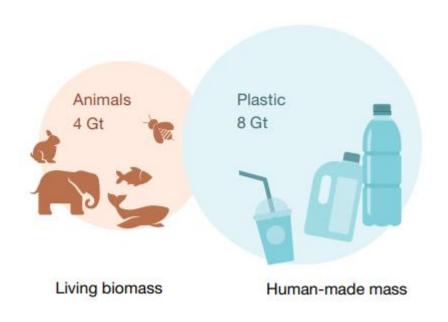
# Planetary Boundaries – Holocene – Anthropocene?

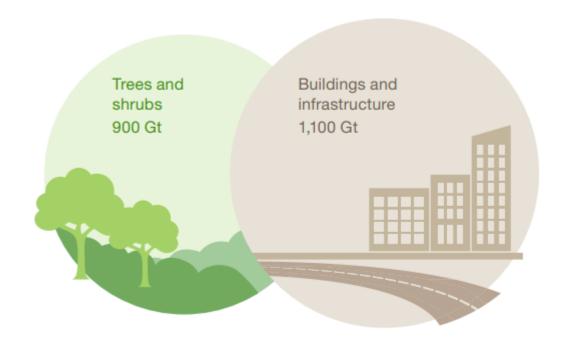
Where do we stand?

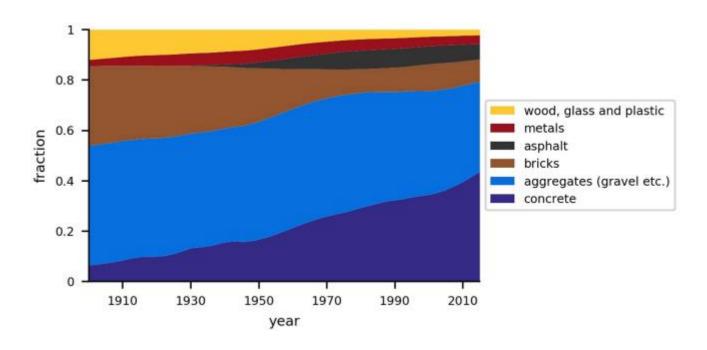

Do Limits exist?

Have they been reached?

## **Greenhouse Emissions**

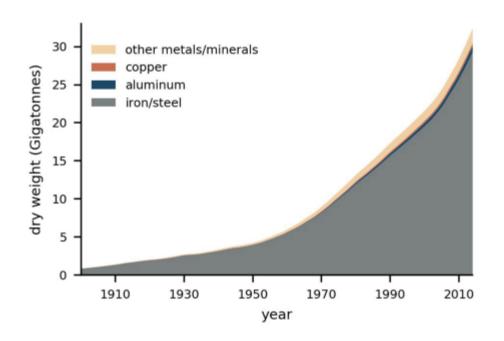

#### World Greenhouse Gas Emissions in 2020 (Sector | End Use | Gas)

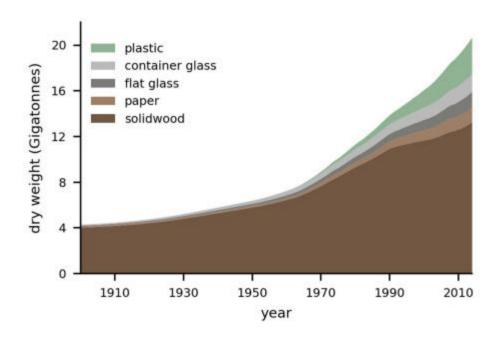

Total: 47.5 GtCO2e



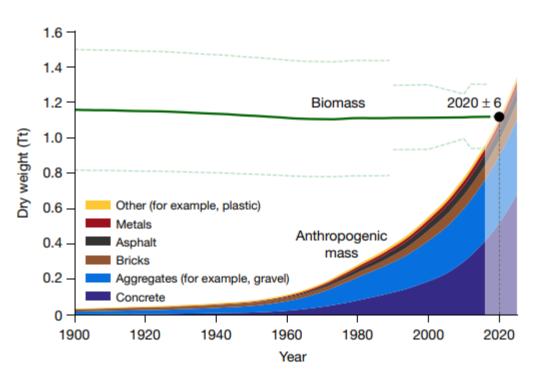

Past estimation: 49,8 GtCO2e (2019)

#### **Biomass vs Human-made mass?**

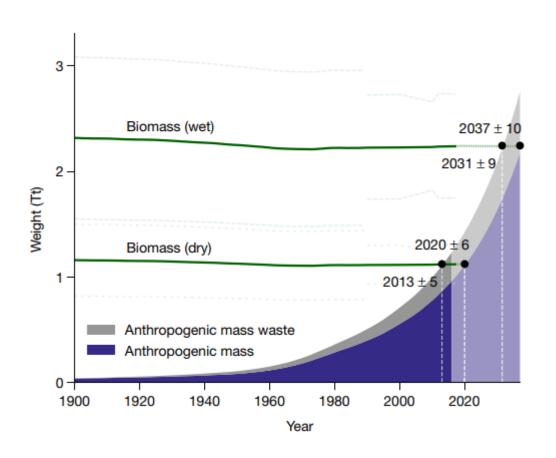






Anthropogenic mass composition since the year 1900, divided into material groups

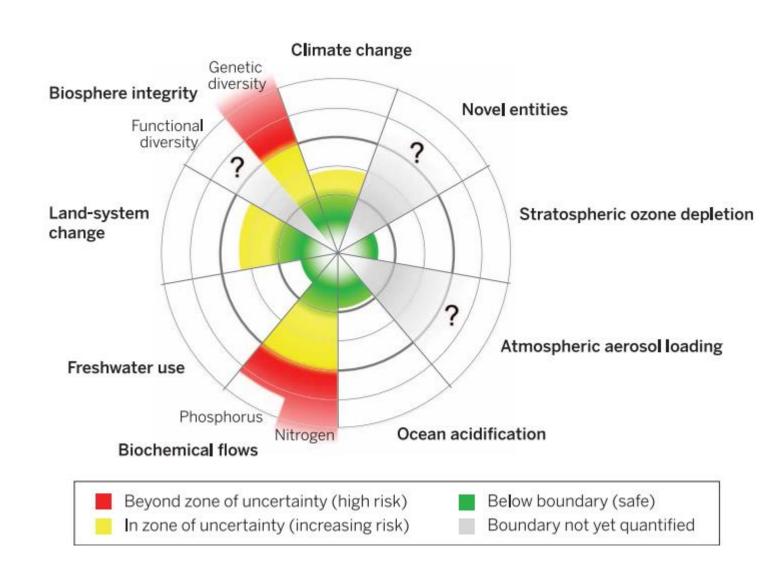
Nature **2020**, *588*, 442. https://doi.org/10.1038/s41586-020-3010-5 Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: the socioeconomic metabolism of the global economy, 1900–2015. *Glob. Environ. Change* **2018**, *52*, 131–140.






#### Biomass dry




Dashed green lines: ±1 s.d.



Nature **2020**, 588, 442.

https://doi.org/10.1038/s41586-020-3010-5

#### What does that means?



Science **2015**, *347*, 1259855. DOI: 10.1126/science.1259855

https://planetaryboundaries.kcvs.ca/

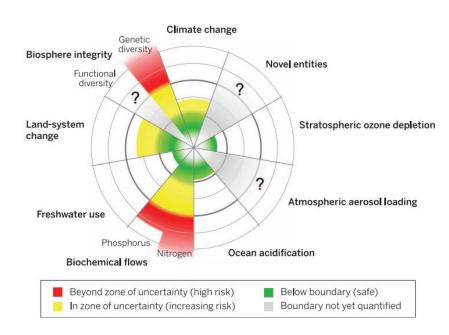
Rockström, J. et al.,

Planetary boundaries: Exploring the safe operating space for humanity.

Ecol. Soc. 2009, 14, 32.

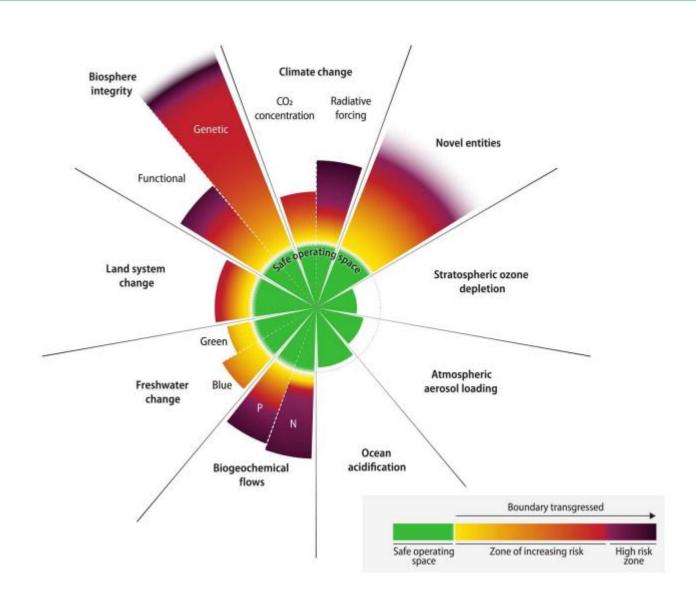
http://www.ecologyandsociety.org/vol14/iss2/art32/

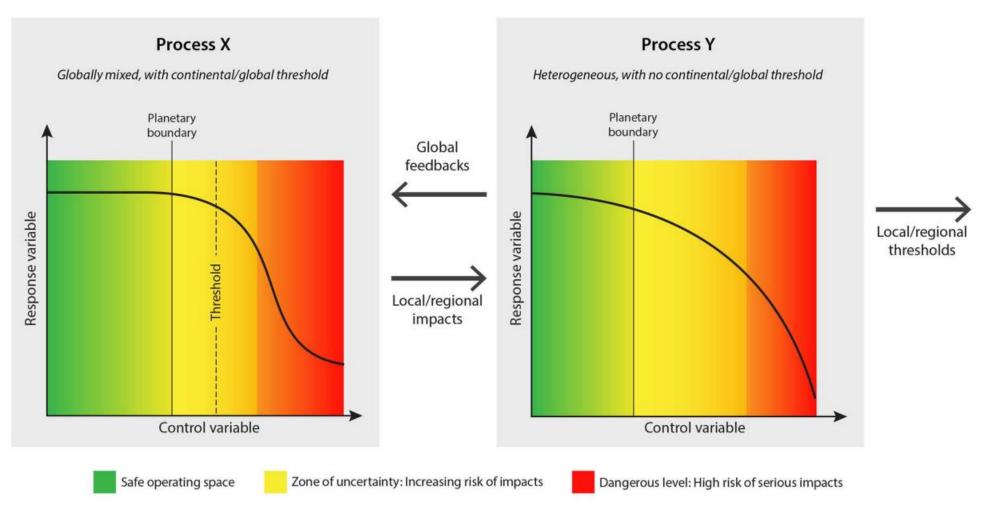
Rockström, J. et al., A safe operating space for humanity. Nature 2009, 461, 472.


http://dx.doi.org/10.1038/461472a

| Earth-system process                                          | Parameters                                                                                                                                                                                                                                                             | Proposed<br>boundary | Current<br>status | Pre-industrial value |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|----------------------|
| Climate change                                                | (i) Atmospheric carbon dioxide<br>concentration (parts per million<br>by volume)                                                                                                                                                                                       | 350                  | 387               | 280                  |
|                                                               | (ii) Change in radiative forcing<br>(watts per metre squared)                                                                                                                                                                                                          | 1                    | 1.5               | 0                    |
| Rate of biodiversity loss                                     | Extinction rate (number of species per million species per year)                                                                                                                                                                                                       | 10                   | >100              | 0.1-1                |
| Nitrogen cycle (part of a boundary with the phosphorus cycle) | Amount of N <sub>2</sub> removed from<br>the atmosphere for human use<br>(millions of tonnes per year)                                                                                                                                                                 | 35                   | 121               | 0                    |
| Phosphorus cycle (part of a boundary with the nitrogen cycle) | Quantity of P flowing into the oceans (millions of tonnes per year)                                                                                                                                                                                                    | 11                   | 8.5-9.5           | -1                   |
| Stratospheric ozone depletion                                 | Concentration of ozone (Dobson unit)                                                                                                                                                                                                                                   | 276                  | 283               | 290                  |
| Ocean acidification                                           | Global mean saturation state of<br>aragonite in surface sea water                                                                                                                                                                                                      | 2.75                 | 2.90              | 3.44                 |
| Global freshwater use                                         | Consumption of freshwater<br>by humans (km³ per year)                                                                                                                                                                                                                  | 4,000                | 2,600             | 415                  |
| Change in land use                                            | Percentage of global land cover<br>converted to cropland                                                                                                                                                                                                               | 15                   | 11.7              | Low                  |
| Atmospheric aerosol loading                                   | Overall particulate concentration in the atmosphere, on a regional basis                                                                                                                                                                                               | To be determined     |                   |                      |
| Chemical pollution                                            | For example, amount emitted to,<br>or concentration of persistent<br>organic pollutants, plastics,<br>endocrine disrupters, heavy metals<br>and nuclear waste in, the global<br>environment, or the effects on<br>ecosystem and functioning of Earth<br>system thereof | To be determined     |                   |                      |

| Earth-system process                                                        | Control<br>variable(s)                                                             | Planetary boundary (zone of uncertainty)                                                                                                                                   | Current value of control variable                     |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Climate<br>change<br>(R2009:                                                | Atmospheric CO <sub>2</sub> concentration, ppm                                     | 350 ppm CO <sub>2</sub> (350–450 ppm)                                                                                                                                      | 398.5 ppm CO <sub>2</sub>                             |
| same)                                                                       | Energy imbalance<br>at top-of-<br>atmosphere, W m <sup>-2</sup>                    | +1.0 W m <sup>-2</sup> (+1.0–1.5 W m <sup>-2</sup> )                                                                                                                       | 2.3 W m <sup>-2</sup><br>(1.1–3.3 W m <sup>-2</sup> ) |
| Change in biosphere integrity (R2009: Rate of biodiversity loss)            | Genetic diversity:<br>Extinction rate                                              | < 10 E/MSY (10–100 E/MSY)<br>but with an aspirational goal of<br>ca. 1 E/MSY (the background<br>rate of extinction loss). E/MSY =<br>extinctions per million species-years | 100-1000 E/MSY                                        |
| .000)                                                                       | Functional diversity: Biodiversity Intactness Index (BII)                          | Maintain BII at 90% (90–30%)<br>or above, assessed<br>geographically by biomes/large<br>regional areas (e.g. southern                                                      | 84%, applied to southern Africa only                  |
|                                                                             | Note: These are<br>interim control<br>variables until more<br>appropriate ones are | Africa), major marine ecosystems (e.g., coral reefs) or by large functional groups                                                                                         |                                                       |
| Science <b>2015</b> , <i>347</i> , 1259855.<br>DOI: 10.1126/science.1259855 | developed                                                                          | lattin av 11                                                                                                                                                               |                                                       |

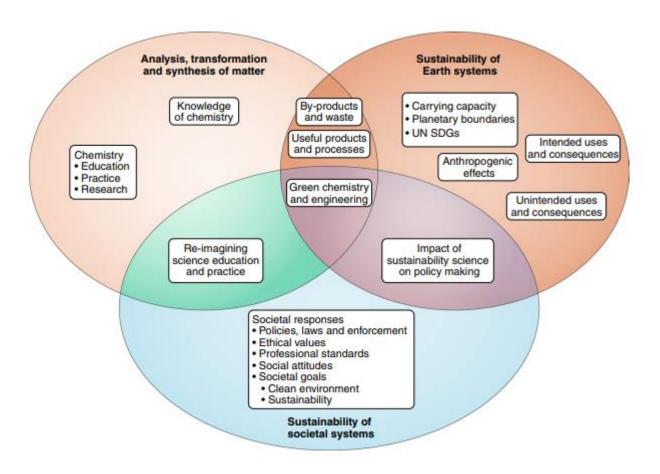

https://www.co2.earth/daily-co2

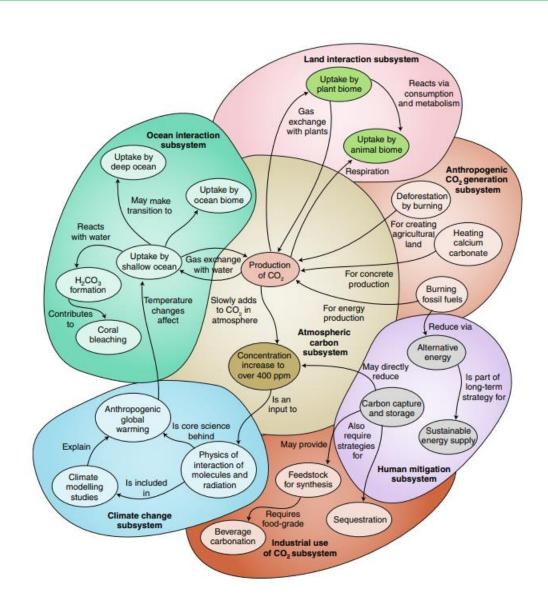

#### What does that means?

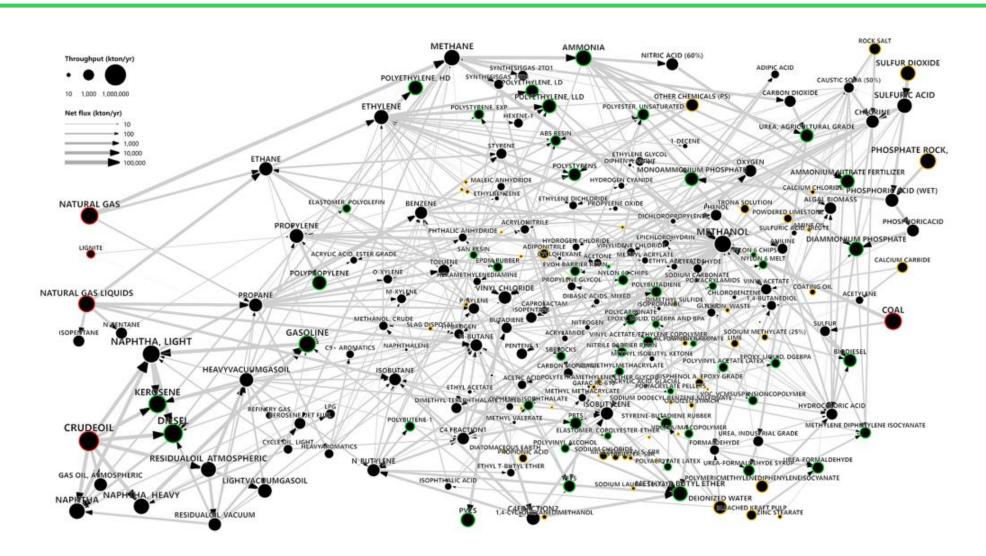


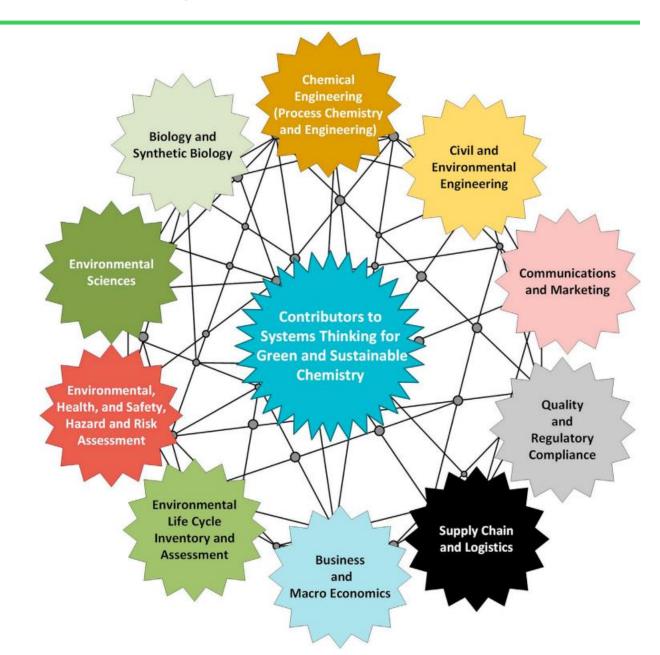
Science Adv. 2023, eadh2458.

https://doi.org/10.1126/sciadv.adh2458

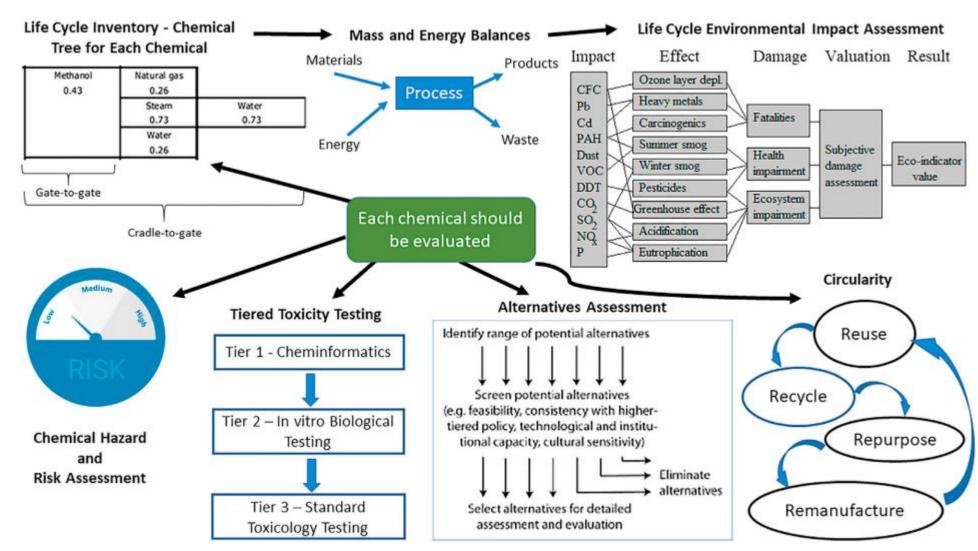




Science **2015**, *347*, 1259855. DOI: 10.1126/science.1259855


"The ability to understand and interpret complex systems" and involves: "visualizing the interconnections and relationships between the parts in the system; examining behaviors that change over time; and examining how systems-level phenomena emerge from interactions between the system's parts"

https://iupac.org/project/2020-014-3-050/










Constable, D. J. C. *iScience* **2021**, *24*, 103489. https://doi.org/10.1016/j.isci.2021.103489



Constable, D. J. C. *iScience* **2021**, *24*, 103489. https://doi.org/10.1016/j.isci.2021.103489

**Green Chemistry** has been defined as the use of chemistry for pollution prevention using suitable designs of products and processes, reducing and mainly, if possible, eliminating the use and generation of hazardous substances.

Anastas & Warner stated in 1998: «It is an approach that provides a fundamental methodology for changing the intrinsic nature of a chemical product or process so that it is inherently of less risk to human and the environment, to prevent pollution, and thereby solve environmental problems, promoting pollution prevention and industrial ecology»

Noyori expressed that "green chemistry is not just a catchphrase. It is an indispensable principle of chemical research that will sustain our civilized society in the twenty-first century and further into the future."

**Green Chemistry** 

WHY? DEFINITION?

Not everything that can be counted counts and not everything that counts can be counted

Einstein?

**Green Chemistry:** 12 Principles



Anastas, P. T.; Eghbali, N. Green Chemistry: Principles and Practice. *Chem. Soc. Rev.* **2010**, *39*, 301. Whiteker, G. T. *Org. Process Res. Dev.* **2019**, *23*(*10*), 2109–2121.

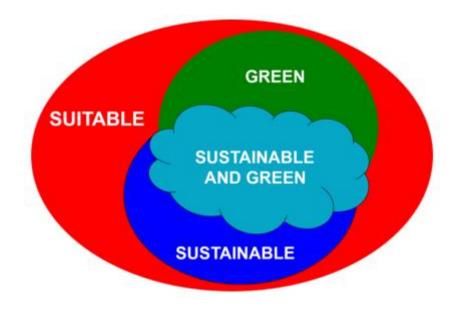
#### **Green Chemistry:** 12 Principles

#### Condensed Principles of Green Chemistry

- P Prevent wastes
- R Renewable materials
- O Omit derivatization steps
- D Degradable chemical products
- U Use safe synthetic methods
- C Catalytic reagents
- T Temperature, Pressure ambient
- I In-Process Monitoring
- V Very few auxiliary substances
- E E-factor, maximise feed in product
- L Low toxicity of chemical products
- y Yes, it is safe



**Sustainable Chemistry** is engaged toward the life cycle assessment (LCA), which is associated with the entire life cycle of a product, process, or activity.


OECD's definition: "Sustainable chemistry is a scientific concept that seeks to improve the efficiency with which natural resources are used to meet human needs for chemical products and services. Sustainable chemistry encompasses the design, manufacture and use of efficient, effective, safe and more environmentally benign chemical products and processes."

Benefits of Sustainable Chemistry

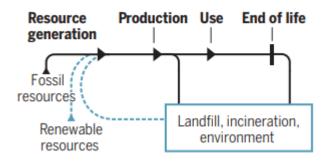
The **environmental** and **societal** benefits of sustainable chemistry include:

- Avoiding the use of persistent, bioaccumulative, toxic, and otherwise hazardous materials,
- Using renewable resources and decreasing consumption of non-renewable resources,
- Minimising negative environmental impacts of chemical processing and manufacturing,
- Providing technologies that are economically competitive for and advantageous to industry.

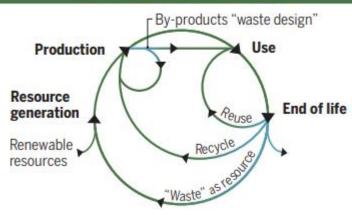
#### **Green Chemistry & Sustainable Chemistry**



# The Molecular Basis of Sustainability


#### Chemistry as a central domain

Chemists have been responsible for deeply understanding the material world and how it functions.


One accepted definition for Green Chemistry: green chemistry is the **design** of chemical products and processes that reduce or eliminate the use and generation of hazardous substances

# Designing

#### Today's chemical sector



#### **Tomorrow's chemical sector**



Mostly linear processes → Circular processes

Fossil feedstocks ---- Renewable feedstocks

Reactive, persistent, or toxic chemical reagents — Benign chemical reagents and products and products

Catalysis using rare metals ---- Catalysis using abundant metals, enzymes, photons, or electrons

Covalent bonds --- Weak, noncovalent interactions

Conventional solvents — Low toxicity, recyclable, inert, abundant, easily separable green solvents or solventless

Material- and energy-consuming isolation —— Self-separating systems and purification

"Waste" treatment ---- "Waste" utilization

Design exclusively for use phase with reliance on —Intentional molecule design for full life cycle circumstantial control

Maximum chemical production for increased profit — Maximum performance with minimal benign material use for increased profit

# The Molecular Basis of Sustainability

#### **Chemistry as a central domain**

Paradigm shift is needed

## Box 1. Examples Contrasting Green Chemistry Principles with Traditional Chemical Approaches

Principle 1: avoid waste

Traditional: waste is something to be managed, measured, treated, and disposed of

Principle 3: reagents should be non-toxic

Traditional: toxic chemicals can be safely managed through circumstantial controls

Principle 5: feedstocks should be renewable

Traditional: chemical feedstocks are derived from finite and depleting sources

## **SDG Goals & Green Metrics**

Millenium Development Goals: 8 focuses in 2000.....

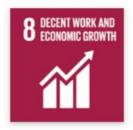


### SDG Goals & Green Metrics

**Sustainable Development Goals:** 12 focuses on responsible and environmentally sustainable production and targets the substantial reduction of waste generation by 2030.






































### SDG Goals & Green Metrics

**Sustainable Development Goals:** 12 focuses on responsible and environmentally sustainable production and targets the substantial reduction of waste generation by 2030.

























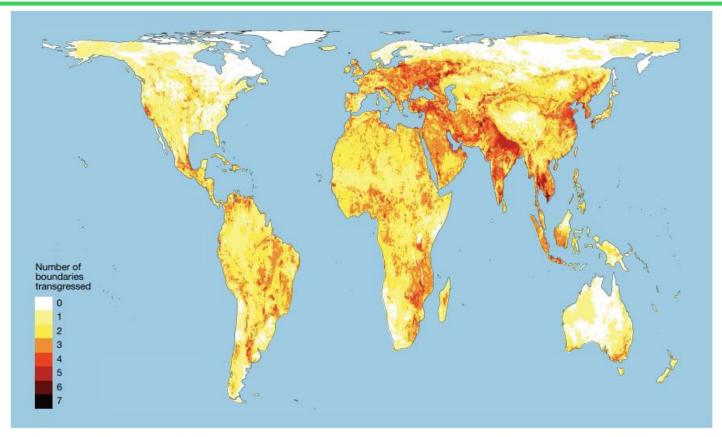













**Sustainable Development Goals:** 12 focuses on responsible and environmentally sustainable production and targets the substantial reduction of waste generation by 2030.

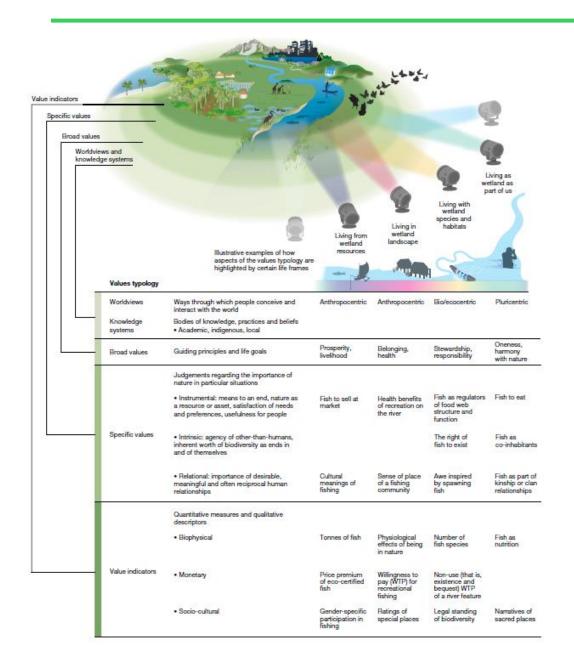
For example: Climate action (SDG13) Make consumption and production more sustainable (SDG12)

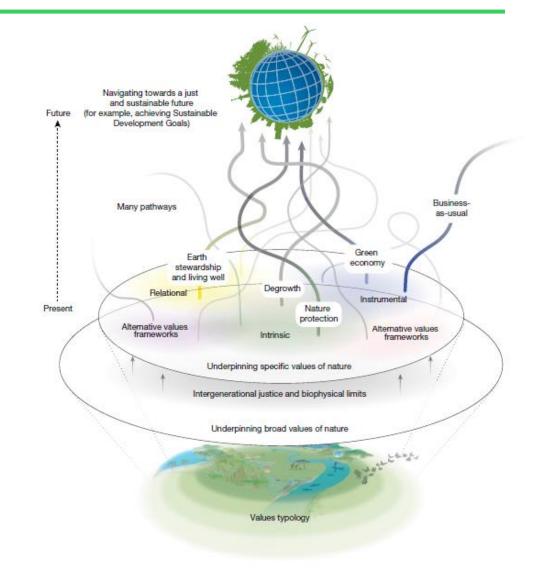
Systemic impact means accounting for each goal's positive and negative influence on all other goals.





 $\label{lem:fig.3} \textbf{Hotspots of current ESB transgressions.} The number of subglobal climate (two local exposure boundaries), functional integrity, surface water, groundwater, nitrogen, phosphorus and aerosol safe and just ESBs currently transgressed by location. No more than seven of these eight metrics have their ESBs transgressed in any one pixel. Since climate is a globally defined ESB, we use wet bulb temperatures of over 35 °C for at least 1 day per year and low-$ 

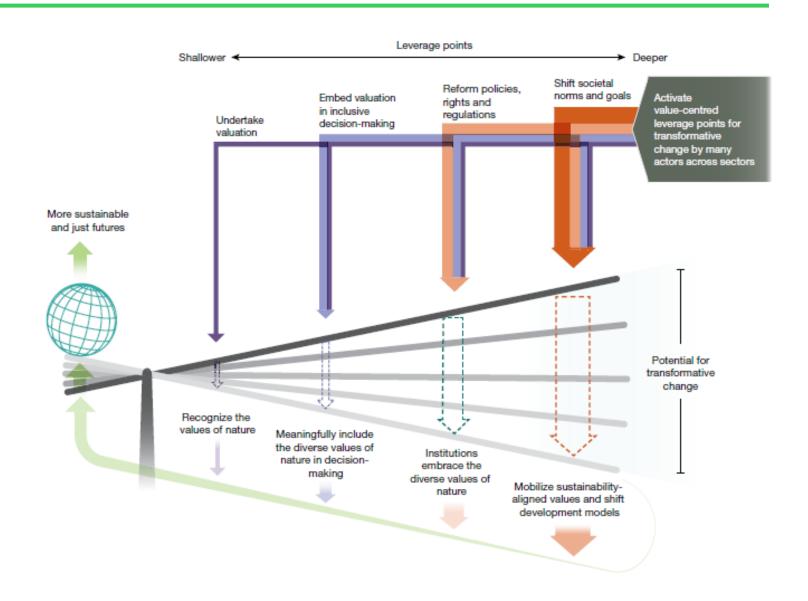

elevation coastal zones (<5 m) exposed to sea-level rise as proxies for local climate transgression while acknowledging that the impacts of climate change are far more diverse. We also emphasize that exposure of a location does not necessarily imply responsibility for causing or addressing these environmental impacts. We invite the reader to investigate the consequences of different boundary values using the code in the code availability information.


## Value of Nature

#### Plurality of values:

Postindustrial societies with high level of material security: increase in the value of wildlife Global South: lower levels security; instrumental values...

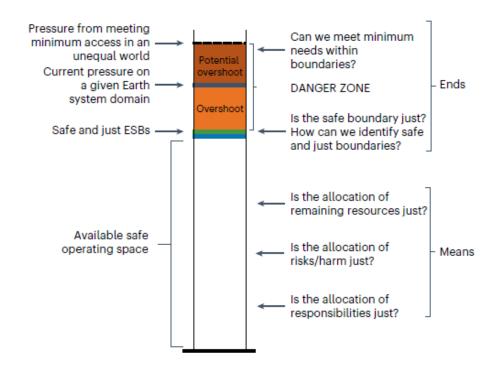
## Value of Nature






Nature, **2023**, 620, 821.

https://doi.org/10.1038/s41586-023-06406-9


## Value of Nature



Nature, **2023**, 620, 821.

https://doi.org/10.1038/s41586-023-06406-9

## Justice?



Ideal (conservative not enough); recognition (recognize 'others'); epistemic (include other knowledges) Intragenerational Interspecies and Earth Intergenerational (between generations) (between countries, communities, people) system stability Procedural - access to: Information Decision-making Civic space Courts to make informed decisions to shape decisions to enable e.g. protest to challenge decisions Substantive (distributive, corrective and restorative) Access to: Allocation of: Risks/harm Responsibilities Resources resources/services How to minimize the explicit or for access, risk and after deducting (water, food, energy, Implicit distribution of harm resources minimum Infrastructure and so on) resources Address drivers of ecological degradation and vulnerability Just (no Just (minimum significant access) harm) Minimum Revisiting Dignity and escape Reduce Liability for (sufficientarian) allocation from poverty exposure to Maximum harm caused significant harm mechanisms (limitarian) Ends (social targets) Means (levers of transformation)

Earth system Justice

Nature Sustainability, 2023

https://doi.org/10.1038/s41893-023-01064-1

"you can't manage what you don't measure"

**Edwards Deming or Peter Drucker** 

«If you can't measure it, you can't improve it»

Lord Kelvin

"Nothing becomes more important just because you can measure it. It becomes more measurable, that's all"

**Edwards Deming** 

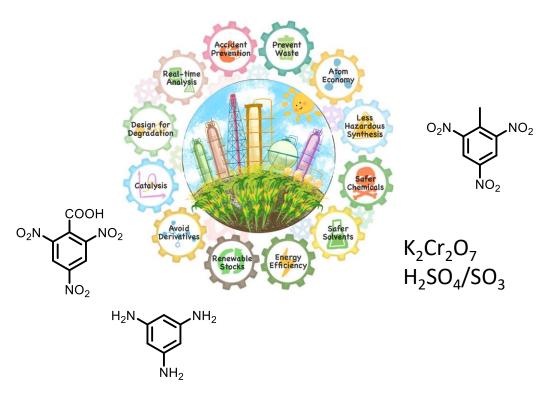
### **Historical context:**

Back in 1956, Nobel Price Winner Robert B. Woodward stated: "synthesis must always be carried out by a plan, and the synthetic frontier can be defined only in terms of the degree to which realistic planning is possible, utilizing all of the intellectual and physical tools available"

### **Historical context:**

The ideal synthesis [...] may be defined as one in which the target molecule is prepared from readily available starting materials in one simple, safe, environmentally-acceptable, and resource-effective operation that proceeds quickly and in quantitative yield."

### **Historical context:**

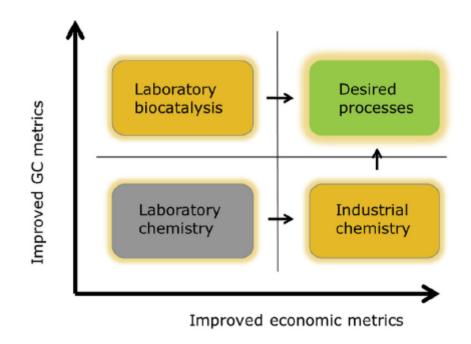

In 1980 for the production of Phloroglucinol: 200 MT/y the synthesis starts from TNT!!

$$C_7H_5N_3O_6 + K_2Cr_2O_7 + 5H_2SO_4 + 9 \text{ Fe} + 21 \text{ HCI}$$
  $\longrightarrow$   $C_6H_6O_3 + Cr_2(SO_4)_3 + 2 \text{ KHSO}_4 + 9 \text{ FeCI}_2 + 3 \text{ NH}_4CI + CO_2 + 8 \text{ H}_2O_3$   
MW: 227 294 98 56 37 126 392 136 127 53 44 18

### **Historical context:**

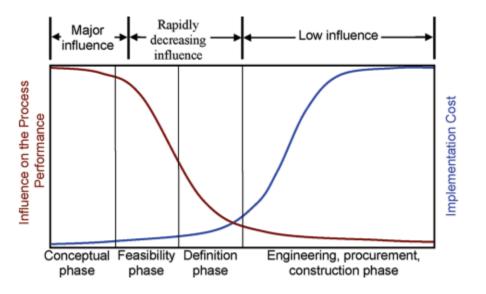
Production of Phloroglucinol: 200 MT/y

Atom Economy [AE]: 126/(126+392+2\*136+9\*127+3\*53+44+8\*18) = 5,5%




Sheldon, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future *ACS Sustainable Chem. Eng.* **2018**, *6*, 32-48 Francisco Garca Calvo-Flores, Sustainable Chemistry Metrics *ChemSusChem* **2009**, *2*, 905.

Can we measure the «greenness» of a Chemical Reaction or Process? How this could be done?


Can we compare 2 chemical steps or chemical processes and decide which one is «greener»?

The accepted consensus for any metric is that it must be simple, easily measurable and clearly highlight the desired information



# Green Metrics: Process Implementation

### Material Flow Analysis



### **Historical context:**

In 1991 Barry Trost defined:

The prime focal point in organic synthesis: Selectivity-chemo- (functional group differentiation), regio- (orientational control of two reacting partners), diastereo-(control of relative stereochemistry), and enantio- (control of absolute stereochemistry)

But **Atom Economy** defined as: how much of the reactants end up in the product has been overlooked!

$$AE = \frac{MW(Product) \times 100}{\sum MW(Raw\ Materials) + \sum MW(Reagents)}$$

Optimum Value= 100.

### **Historical context:**

In the 1992, Roger Sheldon defined the E-Factor

$$EFactor = \frac{\sum m(Input\ Materials\ w.\ o.\ Water) - m\ (Product)}{m(Product)}$$

Optimum Value= 0.

### E Factor:

| Industry Segment<br>(Examples)                                                     | Annual Product<br>Tonnage | E-Factor (kg waste/<br>kg product) | Total Annual<br>Waste Tonnage | No. of Steps  | Years of<br>Development |
|------------------------------------------------------------------------------------|---------------------------|------------------------------------|-------------------------------|---------------|-------------------------|
| Petrochemicals<br>(Solvents, Detergents)                                           | 1,000,000–<br>100,000,000 | ~0.1                               | 10,000,000                    | "Separations" | 100+                    |
| Bulk Chemicals<br>(Plastics, Polymers)                                             | 10,000–<br>1,000,000      | <1-5                               | 5,000,000                     | 1–2           | 10-50                   |
| Fine Chemicals<br>(Coatings, Electronic<br>Parts, Pharmaceutical<br>Raw Materials) | 100–10,000                | 5->50                              | 500,000                       | 3–4           | 4–7                     |
| Pharmaceuticals<br>(Antibiotics, Drugs,<br>Vaccines)                               | 10-1,000                  | 25->100                            | 100,000                       | 6+            | 3–5                     |

Roschangar, F.; Colberg, J. (2018) Green Chemistry Metrics in Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition. Wiley.

### **Historical context:**

### AE and E-Factor, pros vs cons:

AE assumed a chemical yield of 100% whereas E-Factor took it into account

AE does not considered selectivity of the reaction

E-Factor did not take into account water used

E-Factor considered all waste the same....1 kg NaCl vs 1kg of CrO<sub>3</sub>

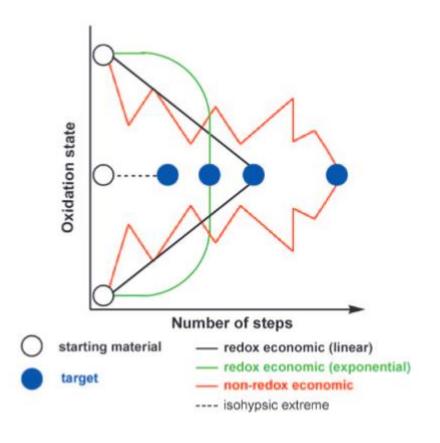
AE is easily applied to a one-step reaction whereas E-Factor allows a holistic assessment of a complete Process.

AE allows a rapid evaluation of waste between 2 processes.

E-Factor: What is a waste?

Acid gas scrubbing, pH adjustment in waste treatment plants, etc. included?

Is waste that is produced as a result of energy use (heating or cooling reactions, abatement technology, etc)


Is waste solvent passed on to a waste handler to be burned in a cement kiln included?

Both do not take into account: chemical toxicity, safety risks, energy consumption, etc.

### **Ideality & Complexity:**

$$\% ideality = \frac{[(no. \ of \ construction \ rxns) + (no. \ of \ strategic \ redox \ rxns)]}{(total \ no. \ of \ steps)} \times 100$$

Complexity = %ideality × total no. of reaction Complexity = no. of construction reactions + no. of strategic redox reactions



Development of New Metrics: Pharma industries

Need for others metrics

Reaction Mass Efficiency included all reactant mass, yield & atom economy

$$RME = \frac{m(Product) \times 100}{\sum m(Raw\ Materials)}$$
Optimum Value= 100.

But: does not include all the other materials: reagents, solvents, catalysts.

Development of New Metrics: Pharma industries

Mass Intensity & Process Mass Intensity:

$$MI = \frac{Total\ mass\ used\ in\ a\ process\ step\ or\ a\ process\ (kg)(excl.\ water)}{Mass\ of\ Product\ (kg)}$$

Optimum Value= 1.

$$PMI = \frac{Total\ mass\ used\ in\ a\ process\ step\ or\ a\ process\ (kg)(incl.\ water)}{Mass\ of\ Product\ (kg)}$$

Optimum Value= 1.

Development of New Metrics: Pharma industries

Process Mass Intensity:

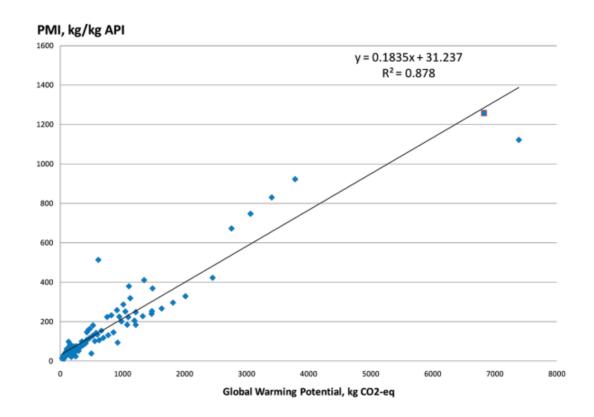
$$PMI = \frac{Total\ mass\ used\ in\ a\ process\ step\ or\ a\ process\ (kg)(incl.\ water)}{Mass\ of\ Product\ (kg)}$$

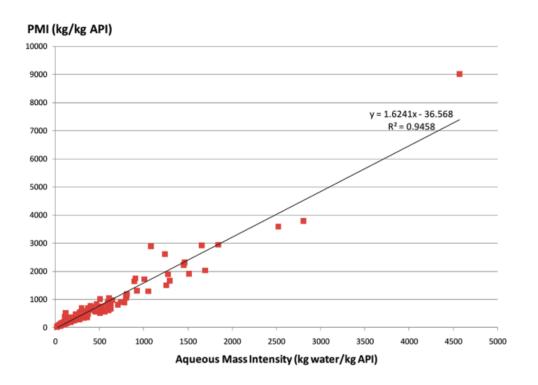
Optimum Value= 1.

Good indicator of the efficiency of a step or a synthesis

### **Development of New Metrics: Pharma industries**

PMI vs cEFactor

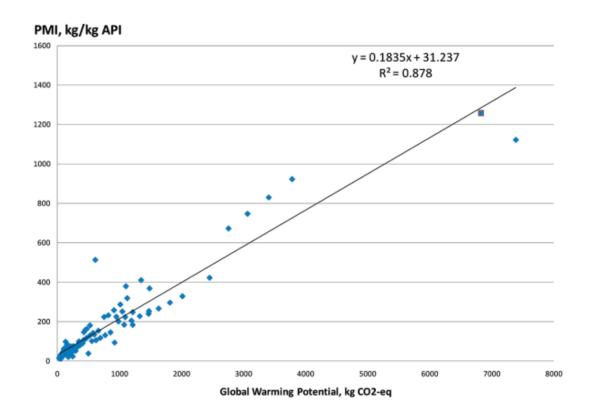

$$cEFactor = \frac{\sum m(Input\ Materials\ incl.\ Water) - m\ (Product)}{m(Product)}$$

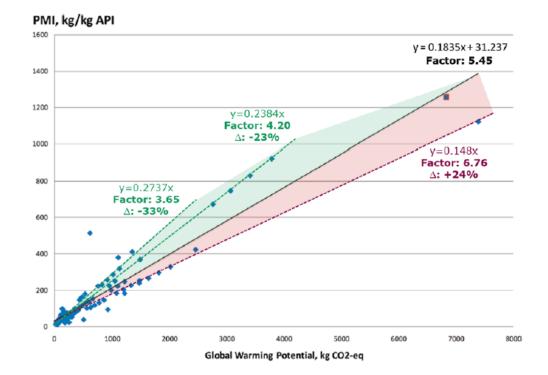

cEFactor = PMI - 1 There is more than «-1»!

"end-of-pipe view of waste-management philosophy from the 1980s"

### PMI vs cEFactor

"Simply put, the good focus is on minimizing waste. The greater focus is on maximizing value and efficiency. If one maximizes value, waste reduction will be one of the benefits."




all development compounds in GlaxoSmithKline's portfolio (2011)

### PMI vs *cEFactor*

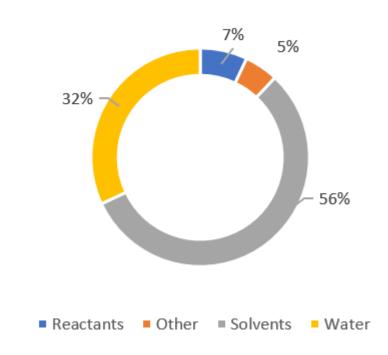
"Simply put, the good focus is on minimizing waste. The greater focus is on maximizing value and efficiency. If one maximizes value, waste reduction will be one of the benefits."





all development compounds in GlaxoSmithKline's portfolio (2011)

Colorful visualization of deviation from average PMI GWP correlation was performed at Merck KGA , Darmstadt, Germany for benchmarking


Internal Presentation.

### **PMI**

ACS GCI Pharmaceutical Roundtable 2008

Biggest waste contributor

# Composition by Mass of the type of materials used to manufacture API



## PMI

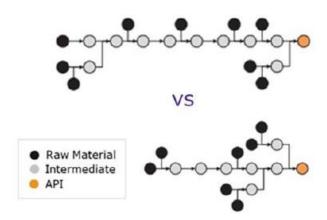
### **PMI Potential Pitfalls**

Reaction 1

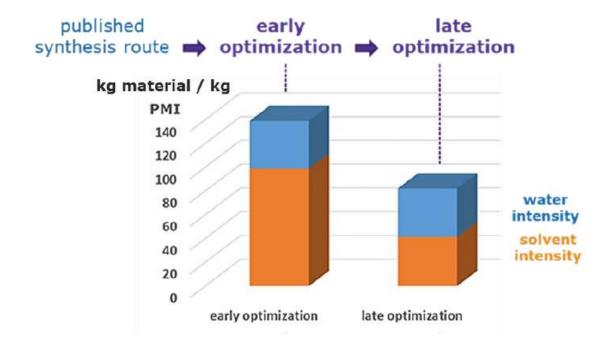
Reaction 2

|                                   | AE (%)            | RME (%) | PMI $(g g^{-1})$ | $PMI_{RRC}$ (g g <sup>-1</sup> ) | PMI <sub>Solv</sub> (g g <sup>-1</sup> ) | Yield (%) |
|-----------------------------------|-------------------|---------|------------------|----------------------------------|------------------------------------------|-----------|
| Literature data reported          |                   |         |                  |                                  |                                          |           |
| Reaction 1: [Acid] = 0.1 M        | 97                | 87      | 17.3             | 1.8                              | 15.5                                     | 92        |
| Reaction 2: [Acid] = 2.9 M        | 93                | 75      | 3.9              | 2.2                              | 1.7                                      | 81        |
| Simulation A: [Acid] = 0.4 M, li  | terature yield    |         |                  |                                  |                                          |           |
| Reaction 1                        | 97                | 87      | 5.7              | 1.8                              | 3.9                                      | 92        |
| Reaction 2                        | 93                | 75      | 14.6             | 2.2                              | 12.4                                     | 81        |
| Simulation B: [Acid] = literature | e data, yield = 9 | 0%      |                  |                                  |                                          |           |
| Reaction 1                        | 97                | 85      | 17.7             | 1.8                              | 15.8                                     | 90        |
| Reaction 2                        | 93                | 83      | 3.5              | 2.0                              | 1.5                                      | 90        |
| Simulation C: [Acid] = 0.4 M, yi  | ield = 90%        |         |                  |                                  |                                          |           |
| Reaction 1                        | 97                | 85      | 5.8              | 1.8                              | 4.0                                      | 90        |
| Reaction 2                        | 93                | 83      | 13.2             | 2.0                              | 11.2                                     | 90        |
| Simulation D: [Acid] = 0.4 M, y   | ield = 50%        |         |                  |                                  |                                          |           |
| Reaction 1                        | 97                | 47      | 10.5             | 3.3                              | 7.2                                      | 50        |
| Reaction 2                        | 93                | 46      | 23.7             | 3.5                              | 20.2                                     | 50        |

# PMI


### **PMI Potential Pitfalls**

| Carboxylic acid      | AE (%)              | RME (%) | PMI (g g <sup>-1</sup> ) | $PMI_{RRC}$ (g g <sup>-1</sup> ) | PMI <sub>Solv</sub> (g g <sup>-1</sup> ) | Yield (%) |
|----------------------|---------------------|---------|--------------------------|----------------------------------|------------------------------------------|-----------|
| Simulation 1: [Acid] | = 0.4 M, yield = 90 | 0%      |                          |                                  |                                          |           |
| A                    | 92                  | 76      | 15.7                     | 4.1                              | 11.6                                     | 90        |
| В                    | 93                  | 78      | 13.7                     | 3.6                              | 10.0                                     | 90        |
| C                    | 94                  | 80      | 11.4                     | 3.2                              | 8.2                                      | 90        |
| D                    | 96                  | 82      | 8.8                      | 2.7                              | 6.2                                      | 90        |
| E                    | 97                  | 84      | 6.9                      | 2.3                              | 4.7                                      | 90        |
| Simulation 2: [Acid] | = 0.4 M, yield = 80 | 0%      |                          |                                  |                                          |           |
| A                    | 92                  | 67      | 17.7                     | 4.6                              | 13.1                                     | 80        |
| В                    | 93                  | 69      | 15.4                     | 4.1                              | 11.3                                     | 80        |
| C                    | 94                  | 71      | 12.8                     | 3.6                              | 9.2                                      | 80        |
| D                    | 96                  | 73      | 9.9                      | 3.0                              | 6.9                                      | 80        |
| E                    | 97                  | 74      | 7.8                      | 2.6                              | 5.2                                      | 80        |
| Simulation 3: [Acid] | = 0.4 M, yield = 70 | 0%      |                          |                                  |                                          |           |
| A                    | 92                  | 59      | 20.2                     | 5.2                              | 15.0                                     | 70        |
| В                    | 93                  | 60      | 17.6                     | 4.7                              | 12.9                                     | 70        |
| C                    | 94                  | 62      | 14.6                     | 4.1                              | 10.5                                     | 70        |
| D                    | 96                  | 64      | 11.4                     | 3.4                              | 7.9                                      | 70        |
| E                    | 97                  | 65      | 8.9                      | 2.9                              | 6.0                                      | 70        |


## PMI

### PMI: comparison of different routes & selection tool

How to compare 2 routes: Metrics could help!



After selection: Optimization!



# Safety and Hazard Metrics

Thermal Hazard
Reagent Hazard
Pressure
Hazardous by-product
Waste: metal, toxicity, upcycling

Solvent Usage: number, recovery Mass Intensity of Solvent

Biodegradation, Bioaccumulation, Energy use

Curzons, A. D.; Constable, D. J. C.; Mortimera, D. N.; Cunningham, V. L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—a corporate perspective *Green Chem.*, **2001**, *3*, 1–6.

# Specificity of Perfumery Ingredients

Natural oil extraction Biotechnology Processes Metrics should be easy to understand by our clients and final consumers

Our competitors are also our clients: Needs for metrics that could be asked or guessed with the highest accuracy possible

### Solvents, Water:

$$SI = \frac{\sum m(Solvents\ excl.\ Water)}{m(Product)}$$

Optimum Value= 0.

$$WI = \frac{\sum m(Water)}{m(Product)}$$

Optimum Value= 0.

### **Solvent**:

Required during a reaction:

- enable heat transfer
- mass transfer

Required during post-reaction processing and isolation of products

No solvent could be the ideal choice...

...but could participate in increasing the safety of chemical reactions

And also cleaning of the installations

### GSK's guide

| Solvent          | Health | Safety | Env.   | EHS flag | Suma    |
|------------------|--------|--------|--------|----------|---------|
| Water            | 10     | 10     | 4      | 0        | 24      |
| MeOH             | 5      | 5      | 4      | 0        | 14      |
| EtOH             | 8      | 6      | 3      | 0        | 17      |
| i-PrOH           | 8      | 6      | 3      | 0        | 17      |
| n-BuOH           | 5      | 8      | 5      | 0        | 18      |
| t-BuOH           | 6      | 6      | 3      | 0        | 15      |
| Benzyl alcohol   | 7      | 7      | 6      | 0        | 20      |
| Ethylene glycol  | 7      | 9      | 5      | 0        | 21      |
| Acetone          | 8      | 4      | 3      | 0        | 15      |
| MEK              | 8      | 4      | 3      | 0        | 15      |
| MIBK             | 6      | 7      | 2      | 0        | 15      |
| Cyclohexanone    | 6      | 8      | 6      | 0        | 20      |
| Methyl acetate   | 7      | 4      | 3      | 0        | 14      |
| Ethyl acetate    | 8      | 4      | 4      | 0        | 16      |
| i-PrOAc          | 7      | 6      | 5      | 0        | 18      |
| n-BuOAc          | 8      | 8      | 5      | 0        | 21      |
| Diethyl ether    | 5      | 2      | 4      | -8       | 3       |
| DIPE             | 8      | 1      | 3      | -8       | 4       |
| MTBE             | 5      | 3      | 4      | -8       | 4       |
| THF              | 6      | 3      | 3      | -8       | 4       |
| Me-THF           | 4      | 3      | 4      | 0        | 11      |
| 1,4-Dioxane      | 4      | 4      | 3      | 0        | 11      |
| Anisole          | 7      | 6      | 5      | 0        | 18      |
| DME              | 2      | 4      | 4      | -8       | 2       |
| Pentane          | 8      | 2      | 5      | -8       | 7       |
| Hexane           | 4      | 2      | 3      | -8       | 1       |
| Heptane          | 8      | 3      | 3      | 0        | 14      |
| Cyclohexane      | 7      | 2      | 5      | 0        | 14      |
| Me-cyclohexane   | 8      | 3      | 5      | 0        | 16      |
| Benzene          | 1      | 3      | 5      | -8       | 1       |
| Toluene          | 4      | 4      | 3      | 0        | 11      |
| Xylenes          | 6      | 5      | 2      | 0        | 13      |
| DCM              | 4      | 6      | 3      | -8       | 5       |
| Chloroform       | 3      | 6      | 3      | -8       | 4       |
| CCl <sub>4</sub> | 3      | 4      | 4      | -8       | 3       |
| DCE              | 2      | 6      | 4      | -8       | 4       |
| Chlorobenzene    | 4      | 8      | 6      | 0        | 18      |
| Acetonitrile     | 6      | 6      | 2      | 0        | 14      |
| DMF              | 2      | 9      | 4      | -8       | 7       |
| DMAc             | 2      | 8      | 2      | -8       | 4       |
| NMP              | 3      | 8      | 4      | -8       | 7       |
| DMPU             | 4      | 7      | 3      | 0        | 14      |
| DMSO             | 7      | 2      | 5      | 0        | 14      |
| Sulfolane        | 6      | 10     | 5      | 0        | 21      |
| Nitromethane     | 4      | 2      | 3      | -8       | 1       |
| Methoxy-ethanol  | 2<br>6 | 6<br>7 | 3      | -8       | 3       |
| Acetic acid      | 4      | 6      | 4<br>5 | 0        | 17      |
| Ac₂O<br>Pvridine | 4      | 7      | 2      | -8       | 15<br>5 |
| TEA              | 3      | 4      | 4      | -8       | 3       |

### Astra-Zeneca's guide

| Solvent         | Health | Safety | Envir. | Sum <sup>a</sup> |
|-----------------|--------|--------|--------|------------------|
| МеОН            | 5      | 7      | 7      | 19               |
| EtOH            | 2      | 7      | 7      | 16               |
| i-PrOH          | 3      | 7      | 6      | 16               |
| n-BuOH          | 4      | 7      | 6      | 17               |
| t-BuOH          | 6      | 7      | 7      | 20               |
| Acetone         | 6      | 7      | 8      | 21               |
| MEK             | 7      | 7      | 7      | 21               |
| MIBK            | 6      | 7      | 9      | 22               |
| Ethyl acetate   | 5      | 7      | 6      | 18               |
| i-PrOAc         | 4      | 7      | 7      | 18               |
| n-BuOAc         | 2      | 7      | 4      | 13               |
| Diethyl ether   | 7      | 10     | 10     | 27               |
| MTBE            | 9      | 7      | 8      | 24               |
| THF             | 8      | 7      | 8      | 23               |
| Me-THF          | 8      | 7      | 9      | 24               |
| 1,4-Dioxane     | 9      | 10     | 9      | 28               |
| Anisole         | 2      | 10     | 6      | 18               |
| DME             | 10     | 3      | 8      | 21               |
| Hexane          | 6      | 10     | 10     | 26               |
| Heptane         | 3      | 10     | 8      | 21               |
| Cyclohexane     | 6      | 10     | 9      | 25               |
| Toluene         | 5      | 10     | 7      | 22               |
| Xylenes         | 2      | 10     | 7      | 19               |
| DCM             | 9      | 1      | 10     | 20               |
| Chlorobenzene   | 9      | 7      | 9      | 25               |
| Acetonitrile    | 8      | 7      | 9      | 24               |
| DMF             | 9      | 3      | 8      | 20               |
| DMAc            | 9      | 3      | 8      | 20               |
| NMP             | 9      | 1      | 8      | 18               |
| DMSO            | 1      | 1      | 6      | 8                |
| Sulfolane       | 1      | 1      | 7      | 9                |
| Methoxy-ethanol | 10     | 3      | 8      | 21               |
| Formic acid     | 10     | 3      | 7      | 20               |
| Acetic acid     | 8      | 3      | 6      | 17               |
| Pyridine        | 9      | 7      | 10     | 26               |
| TEA             | 10     | 7      | 3      | 23               |

### **Solvents Guides:**

| Family        | Solvent           | AZ   | GCI-PR | GSK          | Pfizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sanofi <sup>a</sup>        | Issues | Overall <sup>b</sup> |
|---------------|-------------------|------|--------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|----------------------|
| Water         | Water             | - 12 |        | 24           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | 7_8    | Recommended          |
| Alcohols      | MeOH              | 19   | 14     | 14           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | TBC                  |
|               | EtOH              | 16   | 13     | 17           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | Recommended          |
|               | i-PrOH            | 16   | 16     | 17           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | -      | Recommended          |
|               | n-BuOH            | 17   | 13     | 18           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | Recommended          |
|               | t-BuOH            | 20   | 15     | 15           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Subst. adv.                | -      | TBC                  |
|               | Benzyl alcohol    | _    | 11     | 20           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subst. adv.                | _      | TBC                  |
|               | Ethylene glycol   |      | 13     | 21           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | TBC                  |
| Ketones       | Acetone           | 21   | 15     | 15           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                |        | TBC                  |
|               | MEK               | 21   | 16     | 15           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | TBC                  |
|               | MIBK              | 22   | 17     | 15           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommended                |        | TBC                  |
|               | Cyclohexanone     |      | 14     | 20           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subst. adv.                | _      | TBC                  |
| sters         | Methyl acetate    | _    | 14     | 14           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subst. adv.                | _      | TBC                  |
| Lottis        | Ethyl acetate     | 18   | 15     | 16           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                |        | Recommended          |
|               | i-PrOAc           | 18   | 13     | 18           | Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | Recommended          |
|               | n-BuOAc           | 13   | 14     | 21           | Tieretteu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended                | _      | Recommended          |
| Ethers        | Diethyl ether     | 27   | 21     | 2            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ranned                     | H224   | HH                   |
| Euleis        | Diisopropyl ether | - 41 | - 41   | 7            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. adv.                | Perox. | Hazardous            |
|               | MTBE              | 24   | 21     | 7            | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | Perox. | TBC                  |
|               | THE               | 23   | 16     | - 8          | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | H351   | TBC                  |
|               |                   | 24   |        |              | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | H351   |                      |
|               | Me-THF            |      | 15     | 11           | THE RESIDENCE OF THE PARTY OF T | Recommended                |        | Problematic          |
|               | 1,4-Dioxane       | 28   | 21     | 11           | Undesimble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subst. req.<br>Recommended | -      | Hazardous            |
|               | Anisole           | 18   | 13     | 18           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |        | Recommended          |
|               | DME               | 21   | 23     | 2            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. req.                | H360   | Hazardous            |
| tydrocarbons  | Pentane           |      |        | 7            | Undestrable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Banned                     | H224   | Hazardous            |
|               | Hexane            | 26   | 21     | - 1          | Undesimble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subst. req.                | _      | Hazardous            |
|               | Heptane           | 21   | 17     | 14           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | Problematic          |
|               | Cyclohexane       | 25   | 18     | 14           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | TBC                  |
|               | Me-cyclohexane    | _    | 17     | 16           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | Problematic          |
|               | Benzene           | _    | 21     |              | Undesimble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Banned                     | H350   | HH                   |
|               | Toluene           | 22   | 18     | 11           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | H351   | Problematic          |
|               | Xylenes           | 19   | 15     | 13           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | Problematic          |
| Halogenated   | DCM               | 20   | 18     | 5            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. adv.                | H351   | TBC                  |
|               | Chloroform        | _    | 18     | 4            | Undesimble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Banned                     | _      | HH                   |
|               | CCI <sub>4</sub>  | _    | 19     | 3            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Banned                     | H420   | HH                   |
|               | DCE               | _    | 19     |              | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Banned                     | H350   | HH                   |
|               | Chlorobenzene     | 25   | 16     | 18           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subst. adv.                | _      | Problematic          |
| aprotic polar | Acetonitrile      | 24   | 14     | 14           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recommended                | _      | Problematic          |
| Arrent Laure  | DMF               | 20   | 17     | <del>-</del> | Undesimble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subst. req.                | H360   | Hazardous            |
|               | DMAc              | 20   | 16     | 4            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. req.                | H360   | Hazardous            |
|               | NMP               | 18   | 16     | 7            | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. reg.                | H360   | Hazardous            |
|               | DMPU              |      |        | 14           | CIRCEMINISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. adv.                | -      | Problematic          |
|               | DMSO              | 8    | 15     | 14           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | Problematic          |
|               | Sulfolane         | 9    | 13     | 21           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | - E    | Recommended          |
|               | Nitromethane      | 9    | 13     | - 41         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Banned                     | Explo  | HH                   |
| discellaneous |                   | 21   | 20     | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Explo. | Hazardous            |
|               | Methoxy-ethanol   |      |        | - 0          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subst. req.                | H360   |                      |
| cids          | Formic acid       | 20   | 15     |              | Trackle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subst. req.                | _      | TBC                  |
|               | Acetic acid       | 17   | 15     | 17           | Usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subst. adv.                | _      | TBC                  |
| 2000000       | Ac <sub>2</sub> O |      | 16     | 15           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subst. adv.                | -      | TBC                  |
| Amines        | Pyridine          | 26   | 16     | 91           | Undesirable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subst. adv.                | 5-38   | TBC                  |
|               | TEA               | 23   | 18     | 30           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Subst. req.                | -      | Hazardous            |

Prat, D. et al. Green Chem. **2014**, 16, 4546. Winterton, N. Clean Technologies and Environmental Policy **2021**, 23, 2499.

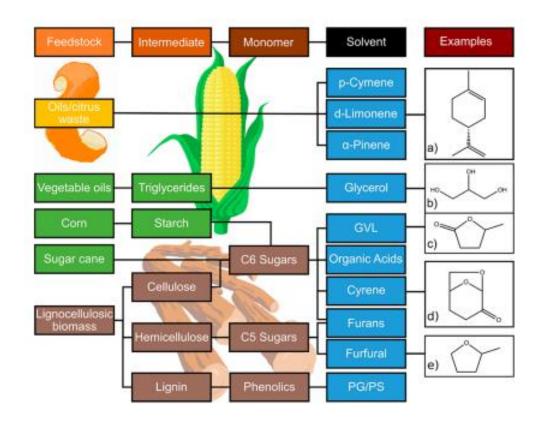
<sup>&</sup>lt;sup>a</sup> Subst. adv.: substitution advisable; Subst. req.: substitution requested. <sup>b</sup> TBC: to be confirmed; HH: highly hazardous.

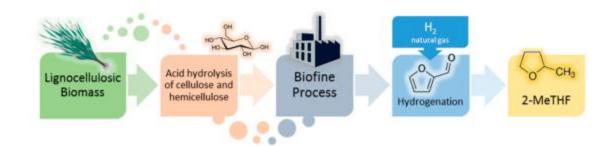
### **Solvents Guide:**



Water, EtOH, i-PrOH, n-BuOH, EtOAc, i-PrOAc, n-BuOAc, anisole, sulfolane.

MeOH, t-BuOH, benzyl alcohol, ethylene glycol, acetone, MEK, MIBK, cyclohexanone, MeOAc, AcOH, Ac<sub>2</sub>O.


Me-THF, heptane, Me-cyclohexane, toluene, xylenes, chlorobenzene, acetonitrile, DMPU, DMSO.


MTBE, THF, cyclohexane, DCM, formicacid, pyridine.

Diisopropyl ether, 1,4-dioxane, DME, pentane, hexane, DMF, DMAc, NMP, methoxy-ethanol, TEA.

Diethyl ether, benzene, chloroform, CCl<sub>4</sub>, DCE, nitromethane.

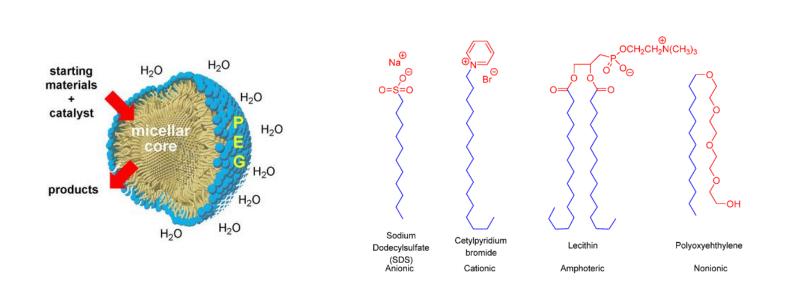
### **Solvents Biosourced:**





### **Solvent recycling:**

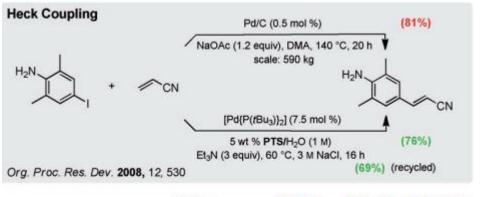
Key properties affecting recyclability:


- Boiling point (i.e., ease of distillation)
- Number of solvents with a boiling point within 10°C (influencing ease of solvent separability)
- Number of azeotropes with other solvents
- Relative ease of drying (most solvents are needed dry)
- Risk on recovery (e.g., via peroxide formation)
- Reactivity (e.g., esters may hydrolyze)
- Water solubility (affecting the potential loss in aqueous streams) Issues

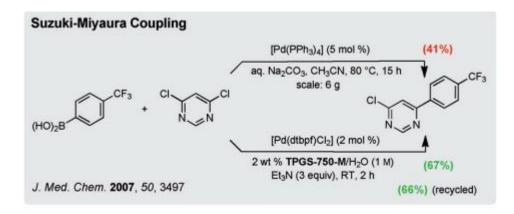
But risk of contamination!

## Solvents Guide: What about water?

### **Chemistry in Water:**


Seminal work by Prof. Breslow: Diels-Alder Reaction accelerated «on-water» Further developement with micellar-type chemistry using Surfactants + catalysis






## Solvents Guide: What about water?

### **Chemistry in Water:**



|           | based on:               | pharma | this work | with recycle |
|-----------|-------------------------|--------|-----------|--------------|
| E Factors | total organic solvent   | 16.7   | 2.5       | 2.8          |
|           | aqueous workup included | 31.1   | 10.2      | 2.8          |



|           | based on:               | pharma | this work | with recycle |
|-----------|-------------------------|--------|-----------|--------------|
| E Factors | total organic solvent   | 22.0   | 1.9       | 1.9          |
|           | aqueous workup included | 50.0   | 7.6       | 1.9          |

E-Factor calculations: Lipschutz, B. H. *et al. Angew. Chem. Int. Ed.* **2013**, *52*, 10952 & Lipschutz, B. H. *et al. Green Chem.* **2014**, *16*, 3660. Kitanosono, T. *et al. Chem. Rev.* **2018**, *118*, 679.

Stevens, A. Synthesis 2019, 51, 2632.

Margery C.-C. et al. Chem. Eur. J. 2018, 24, 6672 & Chem. Sci., 2021, 12, 4237.

Fleck, N et al. Org. Process Res. Dev. 2023, 27, 822.

# Renewability

### **Renewables Intensity**

$$RI = \frac{\sum m(All\ Renewably\ derived\ materials\ used)}{m(Product)}$$

Optimum Value= 1.

$$R \ percentage = \frac{RI}{PMI} \times 100$$

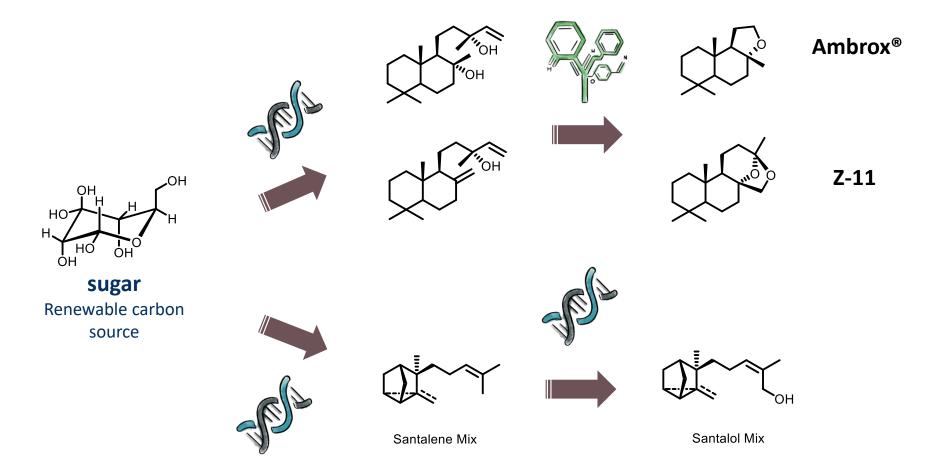
#### **Evaluation of the Impact:**

**New questions and parameters** 

Energy consumption CO<sub>2</sub> Footprint Supply Chain

Common mistake: Bio-based products are they synonymous with the term "sustainable"?

#### Nagoya Protocole:


Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity

Adopted in 2010 Entered in force in 2014 In 2022, ratified by 137 states

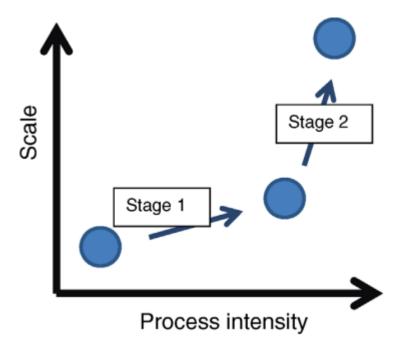
Benefit-sharing obligations Compliance obligations

https://www.cbd.int/abs/doc/protocol/nagoya-protocol-fr.pdf

#### **Evaluation of Biotechnology Processes**



#### **Evaluation of Biotechnology Processes: Pros vs Cons**


| Claim              | Rationale                                                           |
|--------------------|---------------------------------------------------------------------|
| Reduced utilities  | Mild reaction conditions (temperature)                              |
| Safe operation     | Mild reaction conditions (pressure, pH)                             |
| Reduced waste      | High selectivity                                                    |
| Renewable catalyst | Biocatalyst produced by fermentation based on sugar, air, and water |

- Operates in water (thus replacing organic solvents)
- Has highly selective catalysis, including regio- and stereoselectivity (thus reducing E-factors)
- Operates in mild conditions, avoiding the need for protection (thus reducing E-factors)
- Overcomes the use of some hazardous materials (resulting in improved LCA)
- Uses renewable resources (resulting in improved LCA)
- Can be modified, that is, the biocatalyst properties can be altered to suit the process (thus improving the ease of processing)
- Is rarely endo- or exo-thermic (thus reducing energy requirements)
- Provides a high yield as a result of selectivity and mild conditions (thus improving the efficiency of processing)
- Is catalytic rather than stoichiometric (thus improving the ease of processing)

#### **Evaluation of Biotechnology Processes: Pros vs Cons**

| Performance    | Potential limitation |
|----------------|----------------------|
| Selective      | Enzyme               |
| Reaction rate  | Amount of catalyst   |
|                | Mass transfer        |
| Reaction yield | Thermodynamics       |
|                | Stoichiometry        |

#### **Evaluation of Biotechnology Processes**



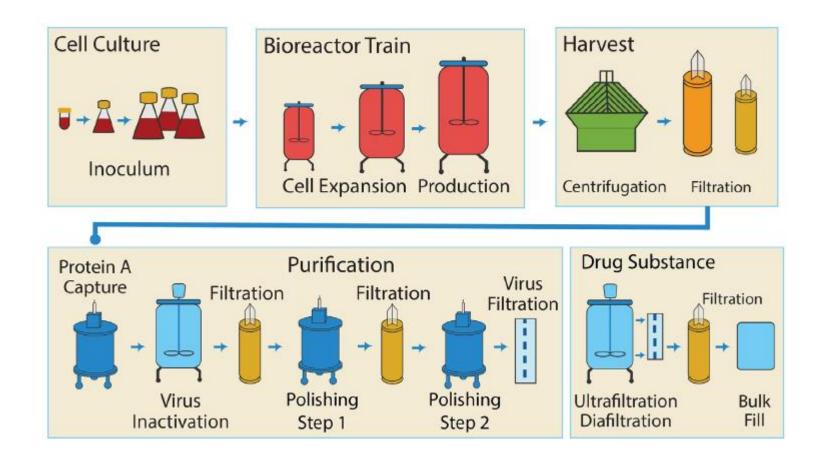
| Stage | Benchmarking objective               | Methodology                             |
|-------|--------------------------------------|-----------------------------------------|
| 1     | Route feasibility                    | In silico metrics: AE; CME              |
| 2     | Biocatalyst and reaction development | In vitro metrics: PMI; SI; WI; E-factor |

#### **Metrics used for Bioprocesses:**

| Metric                                                      | Definition                                                                                               |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Economic metrics                                            |                                                                                                          |
| Productivity (g l <sup>-1</sup> h <sup>-1</sup> )           | Amount of product made as a function of the reactor volume and time                                      |
| Yield of product on substrate (g g <sup>-1</sup> )          | Amount of product (grams) made as a function of the amount of substrate (grams) added in the reaction    |
| Turnover (mol mol <sup>-1</sup> )                           | Amount of product made as a function of the amount of biocatalyst added in the reaction                  |
| Green chemistry metrics                                     |                                                                                                          |
| Atom economy (g mol <sup>-1</sup> per g mol <sup>-1</sup> ) | Molecular weight of the desired product as a function of the sum of the molecular weight of all products |
| E factor (g g <sup>-1</sup> )                               | Amount of waste made as a function of the amount of product made                                         |
| C factor (g g <sup>-1</sup> )                               | Amount of $CO_2$ equivalents as a function of the amount of product made                                 |
| Process mass intensity (g g <sup>-1</sup> )                 | Amount of raw material input as a function of the amount of desired product made $ \\$                   |

Bell, E.L., Finnigan, W., France, S.P. et al. Biocatalysis. Nat Rev Methods Primers **2021**, 1, 46. Woodley, J. M. New frontiers in Biocatalysis for sustainable synthesis. Curr. Opin. Green. Sustain. Chem. **2020**, 21, 22.

### Biopharmaceuticals/Biologics


#### Metrics used for biologics:

Cleaning and sanitization but increases the amount of waste generated

Highly purified water: Energy!

65% of the carbon footprint is attributable to the energy required to maintain the clean room facility that houses the operation

single use systems (SUS) made of mixed plastics which are sterilized by gamma irradiation



Budzinski, K. et al. New Biotechnology **2019**, 49(25), 37-42. Argoud, S. et al. Current Opinion in Green and Sustainable Chemistry **2022**, 35, 100614.

For the energy of water purification: Cataldo, A. L. *et al.* Water related impact of energy: cost and carbon footprint analysis of water for biopharmaceuticals from tap to waste. *Chem Eng Sci X* **2020**, *8*, 100083. <a href="https://doi.org/10.1016/j.cesx.2020.100083">https://doi.org/10.1016/j.cesx.2020.100083</a>

#### **Further Developements for Bringing Benefits to Sustainability of Biocatalysis:**

#### **Sustainability Benefits**

Reaction Intensification Flow Biocatalysis Multi-step Catalysis **Reduced Downstream costs** 

Reduced *E* Factor

Reduction in Reactor Footprint

Better control

Reduction in Isolation steps and Solvent swap

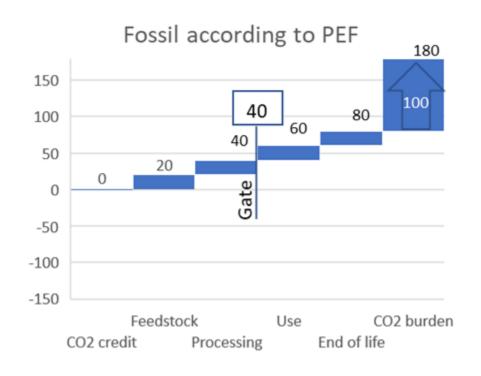
#### New metrics proposed:

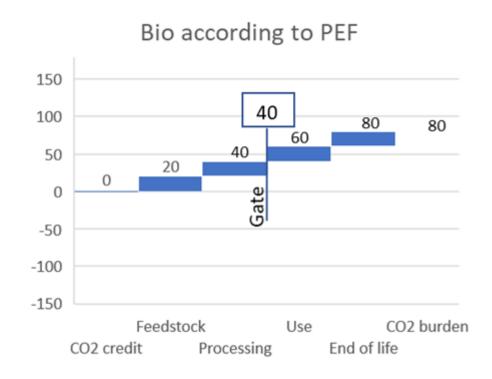
Feedstock Intensity: 
$$FI = \frac{M_{raw Mat}}{M_{main Prod} + M_{co Prod}}$$

Circular Process Feedstock Intensity:

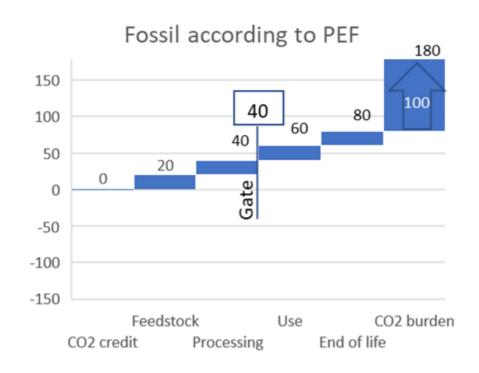
$$CPFI = \frac{M_{raw \, mat}}{M_{Main \, Prod} + MCo_{Prod} + MRec_{Mat}}$$

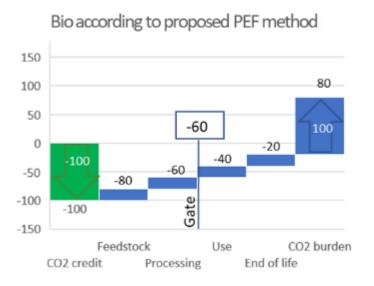
Also the Process Material Circularity, Energy Intensity, Circular-Process Energy Intensity, ...


#### New metrics proposed:


Waste Factor: 
$$WF = \frac{M_{Tot Waste}}{M_{Prod} + M_{co Prod}}$$

**Circular Process Waste Factor:** 


$$CPWF = \frac{M_{Tot Waste}}{M_{Prod} + MCo_{Prod} + MRec_{Mat}}$$


#### Carbon footprint of Bio-based Products: proposition of the CEFIC [European Chemical Industry Council]





#### **Carbon footprint of Bio-based Products:**





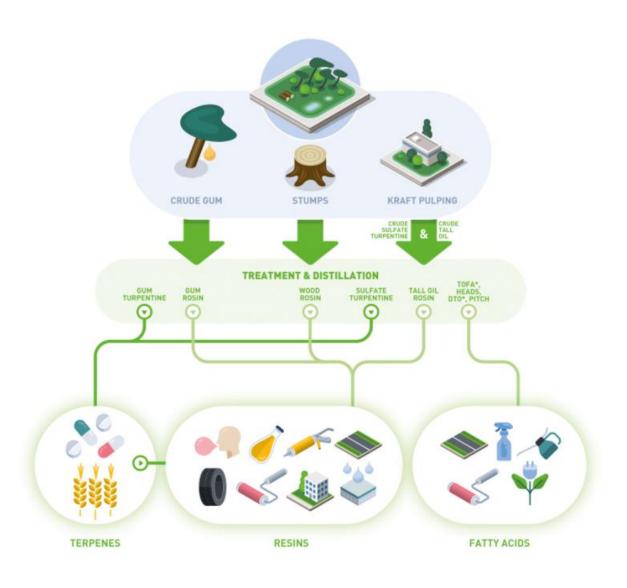
#### **Carbon footprint of Bio-based Products:**

Facilitate the development and adoption of international sustainability indicators for Biobased Products that are science-based, unambiguous and validated. These should consider factors such as:

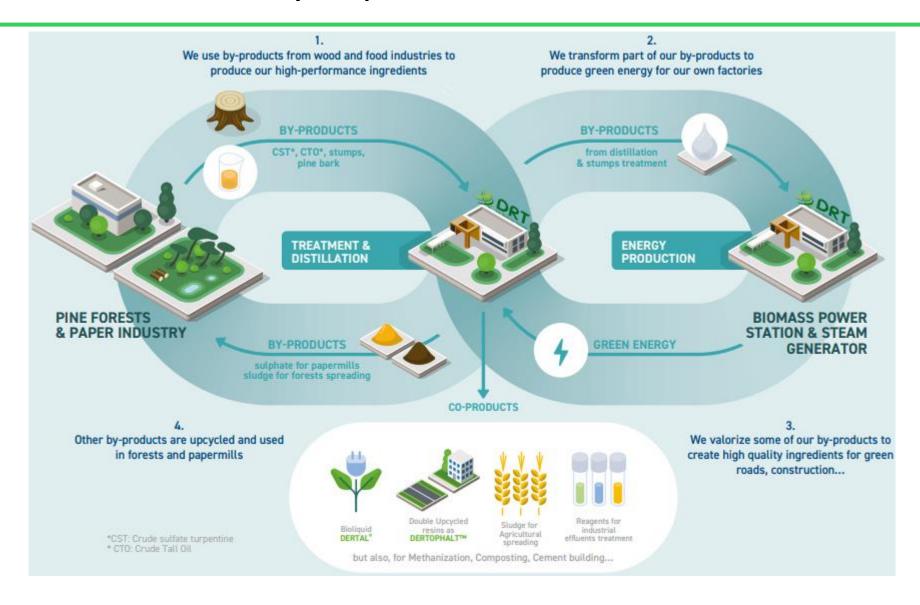
- Energy balance, including non-renewable and renewable energy use.
- All greenhouse gas reduction over product life cycles.
- Bio-based content as an indicator of renewability.
- Anticipated product life.
- Water and solvent use during the different stages of production and impacts on biodiversity during feedstock production and subsequent processing.
- Direct and indirect land use for feedstock production.
- All aspects of end of product life.
- Conventional as opposed to alternative bio-based production economics.
- Impact on human and environmental health.

### **Upcycling of Waste Stream**

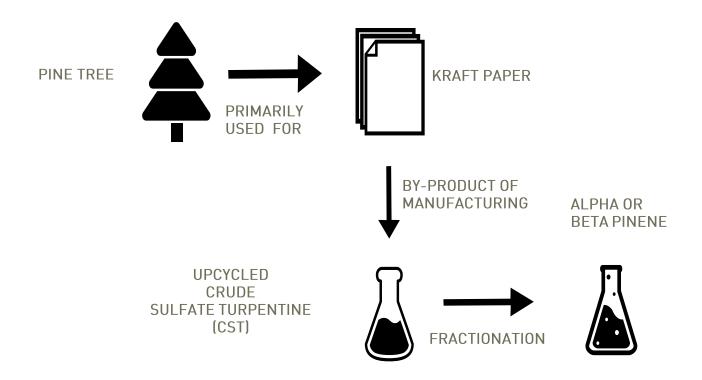

#### **Different Methods for Different Wastes:**


2 types of waste:

Bio-waste: from agriculture, paper industry, ...

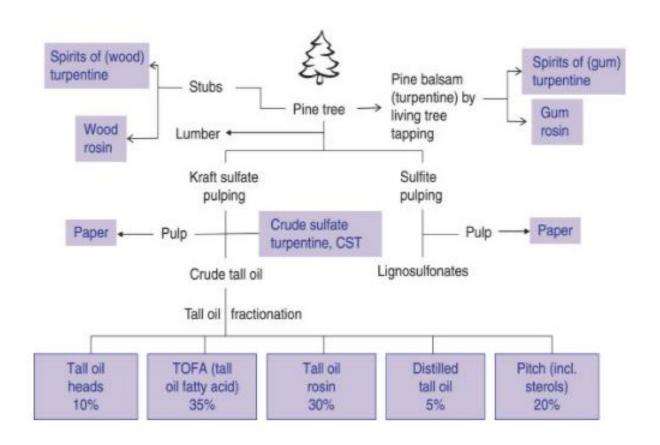

«chemical» waste: Polymers, ...

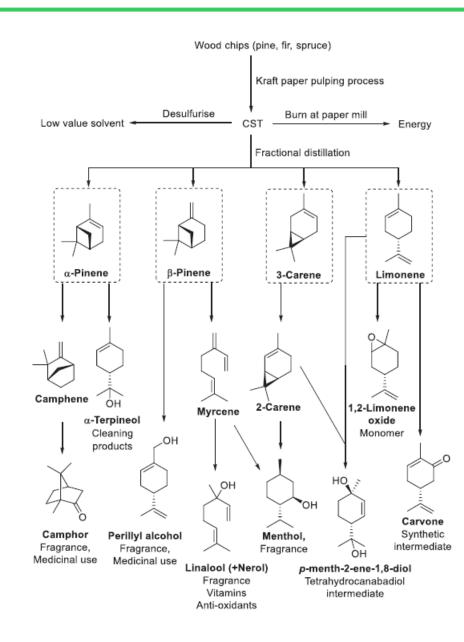
Different types of extraction methods: Organic Solvents, Supercritical CO<sub>2</sub>, Steam, Mechanical extraction,...

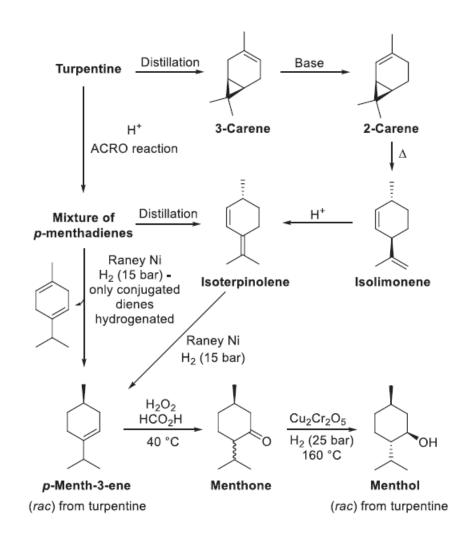


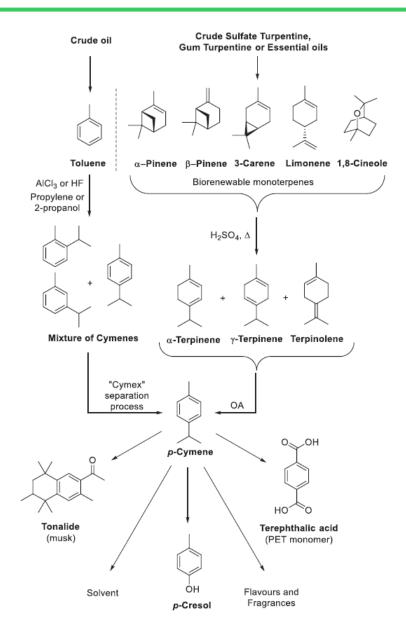



### Circularity in practice: Vieille-St-Giron

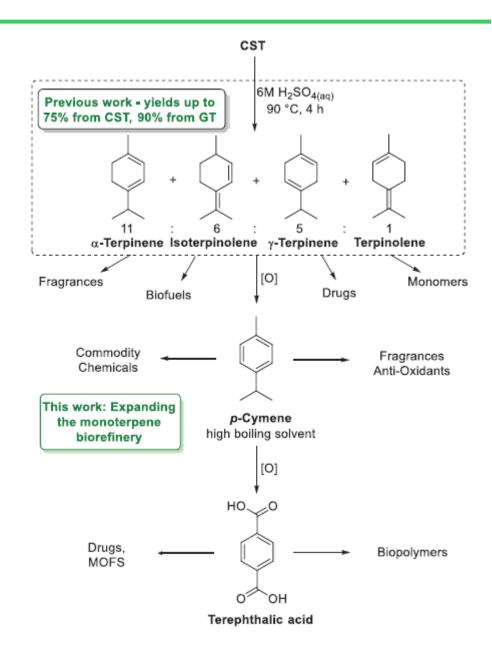




# Circularity in practice: Vieille-St-Giron

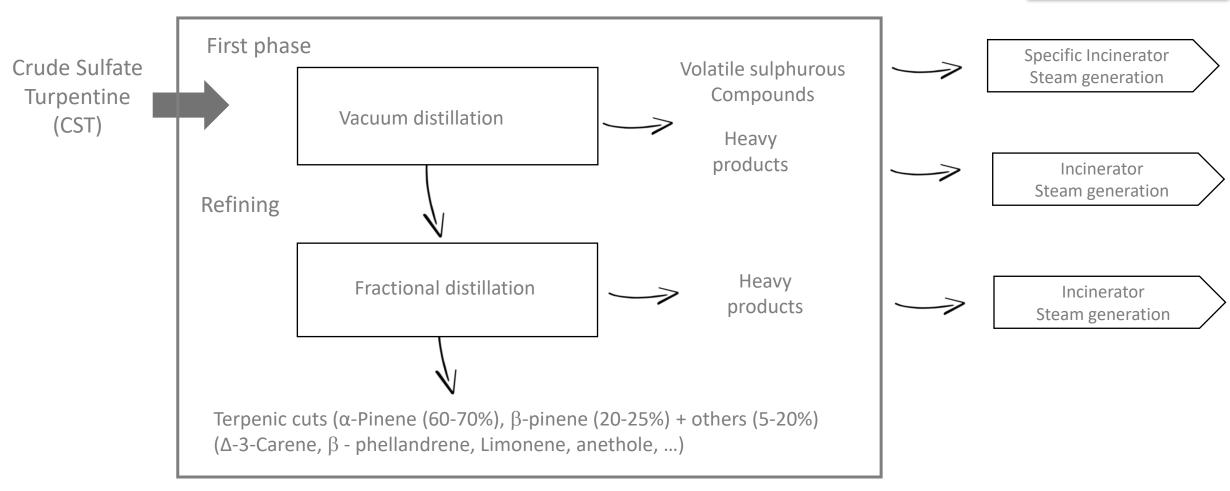



**Principle 7:**Renewable feedstock

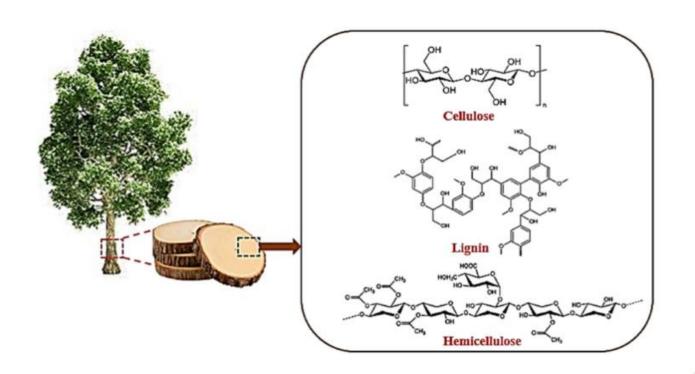


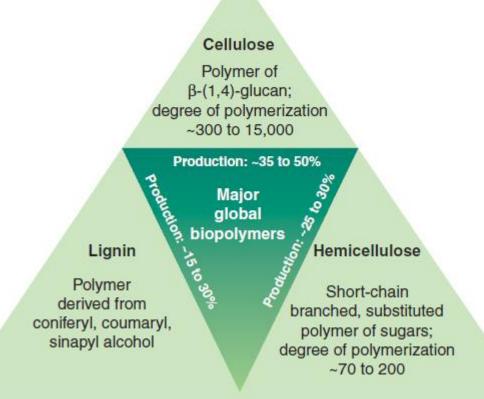


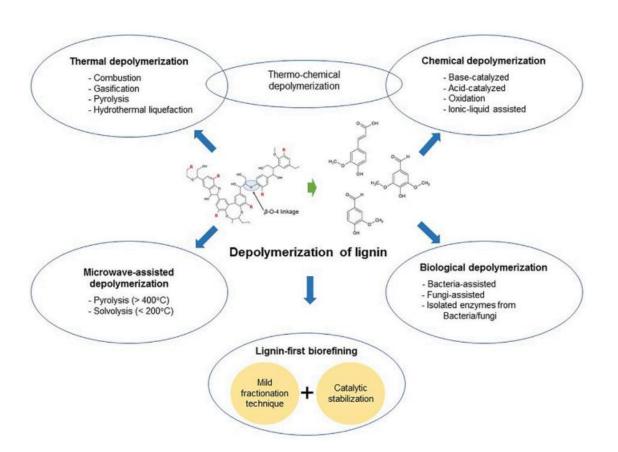


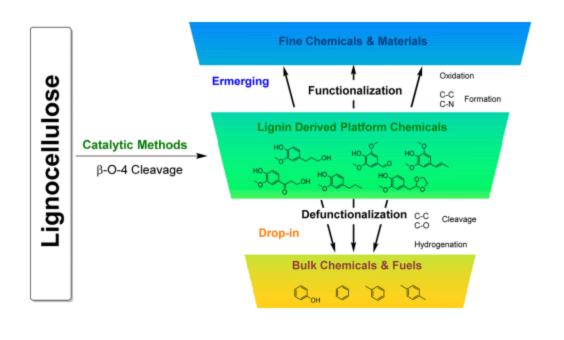

#### **High Value Chemicals:**





Tibbetts, j. D.; Bull, S. D. Adv. Sustainable Syst. **2021**, *5*, 2000292.

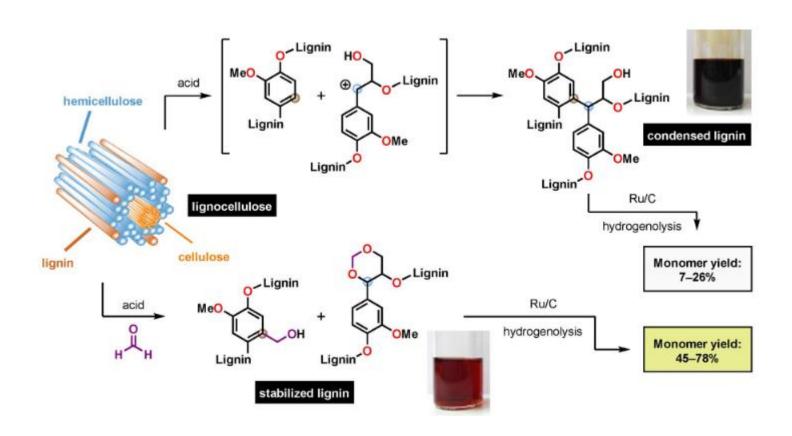



### **Key Global Biomass Resources**


#### Agricultural residues, wood, and herbaceous energy crops:

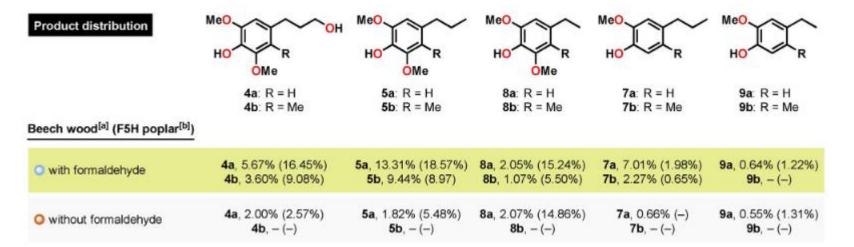


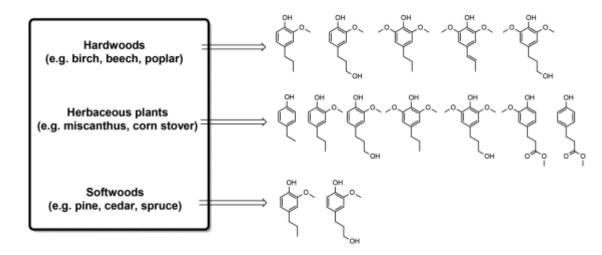



#### **Depolymerization of Lignin:**

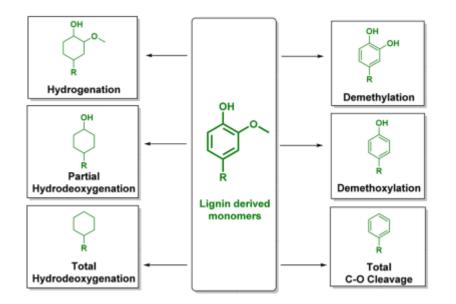


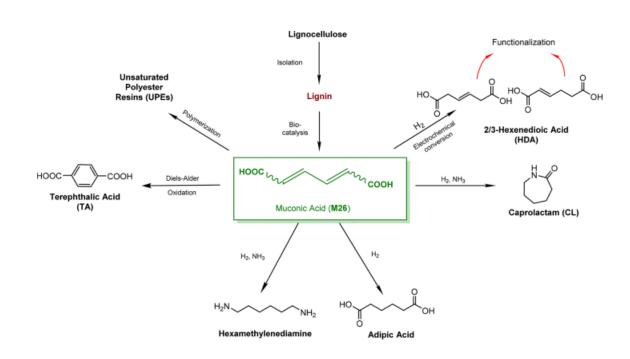



Zhou, N. et al. A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Front. Energy Res. 9:758744. doi: 10.3389/fenrg.2021.758744


### One Example from Bloom Biorenewables:

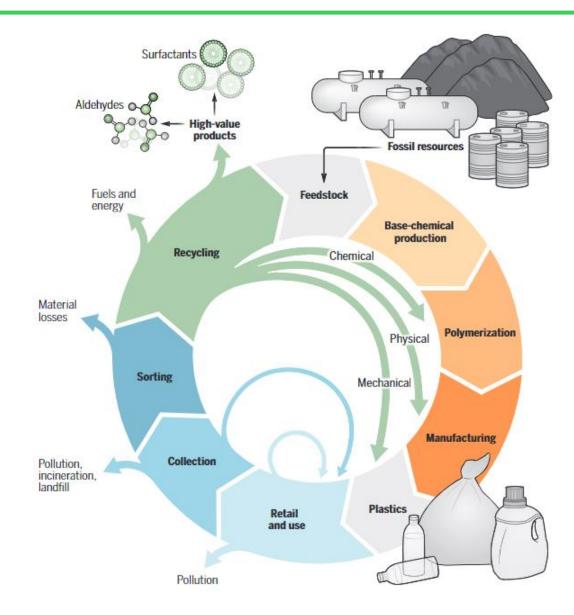



### **One Example from Bloom Biorenewables:**


#### **High Value Chemicals:**






Luterbacher, J. S. & co. Science **2016**, 354, 329. Kärkäs, M. D. ChemSusChem **2017**, 10, 2111. Tibbetts, j. D.; Bull, S. D. Adv. Sustainable Syst. **2021**, 5, 2000292.



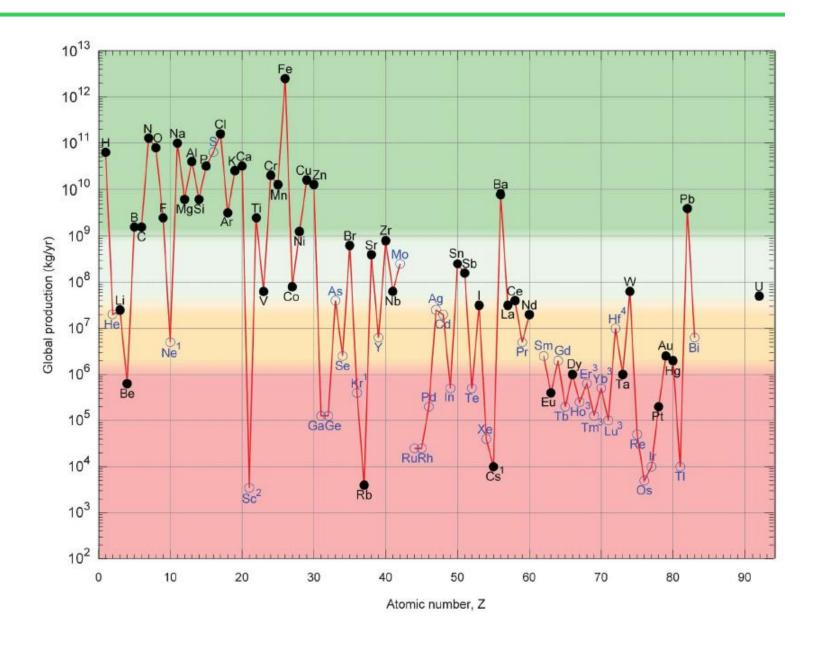


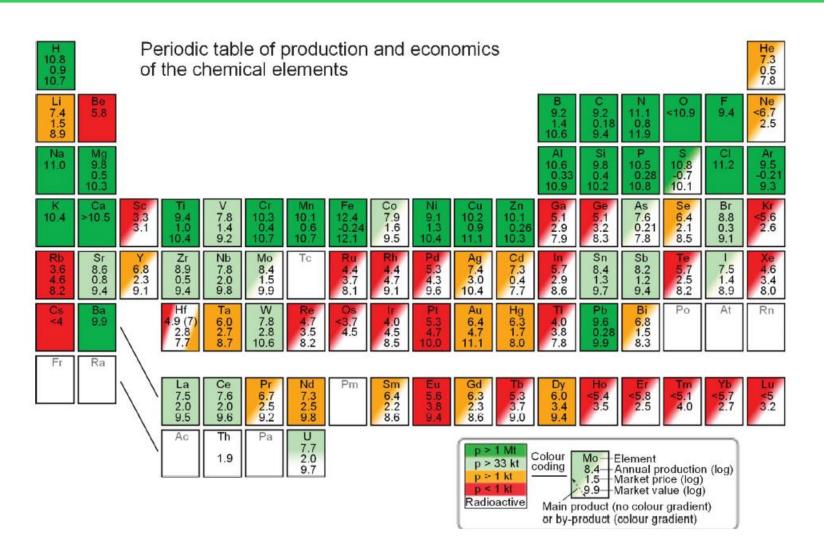
### From Plastics

#### **High Value Chemicals:**

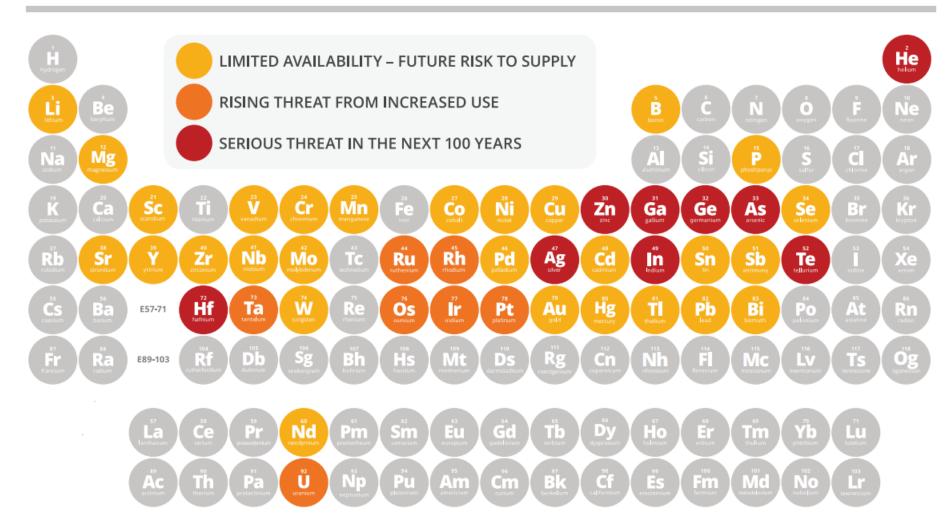


Van Geem, K. M. *Science* **2023**, Vol 381, Issue 6658, 607-608. DOI: 10.1126/science.adj2807


#### **Chemical Catalysis:**


Pros & Cons Metrics? Issues?

OH + 
$$H_2$$
 catalyst AE = 100 %


OH +  $O_2$  catalyst +  $O_2$  COOH AE = 87 %

OH +  $O_2$  COOH AE = 100 %





### THE PERIODIC TABLE'S ENDANGERED ELEMENTS



https://www.acs.org/greenchemistry/research-innovation/endangered-elements.html

# Catalysis

### **Chemical Catalysis:**

Synthesis of Ligands or Metallic Precursors? Green? Sustainable?

From a sustainability, systems, and life cycle perspective:

- Type and chemical nature of the catalyst matters.
- Where and how the metals, the reagents, chemicals, and solvents are sourced.
- The reaction conditions required for the catalysis to proceed.
- The disposition of these components in use disposal.

No clear metric available.

But the impact of the catalysz during process development could be evaluated via: E-Factor, PMI, etc.

### **Hazardeous Reactants & Reagents:**

Hazard vs risk?

A hazard is any source of potential damage, harm or adverse health effects on something or someone Risk is the chance or probability that a person will be harmed or experience an adverse health effect if exposed to a hazard

Chemists have to recognize functional groups and structural motifs that lead to hazardous properties (environmental, safety, and human health) in order to avoid them.

Chemists should recognize and pursue ways to change the chemistry system to one that has minimal adverse impacts and promotes a more sustainable planet.

### **Hazardeous Reactants & Reagents:**

### Fire/Explosion:

- Oxidizer
- Combustible

### **Reaction/Decomposition:**

- Thermal Stability:
- Incompatibility
- Exothermic Reaction

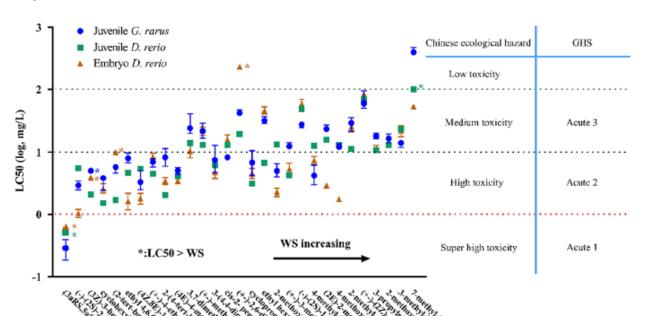
### **Toxicity Acute or Chronic:**

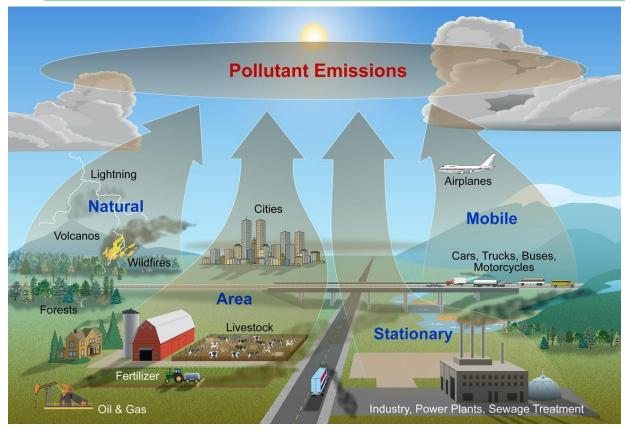
- Carcinogenicity
- Mutagenicity
- Reproductive Tox.
- Sensitization
- Other

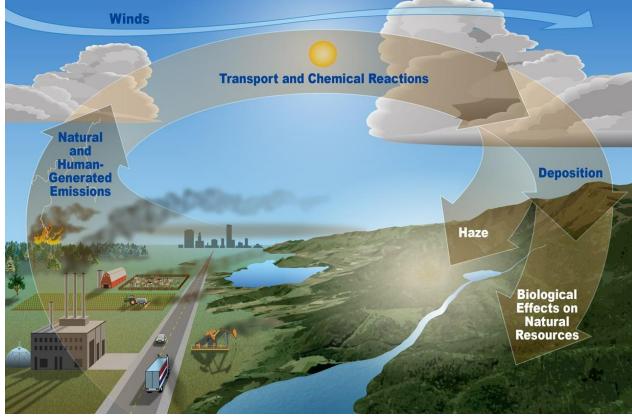
And finally what about the final ingredient? And by-product during the synthesis?

### **Example from Perfumery Industry: Lyral Case Study**

Lyral, widely used perfumery ingredient Lilly-of-the-valley smell

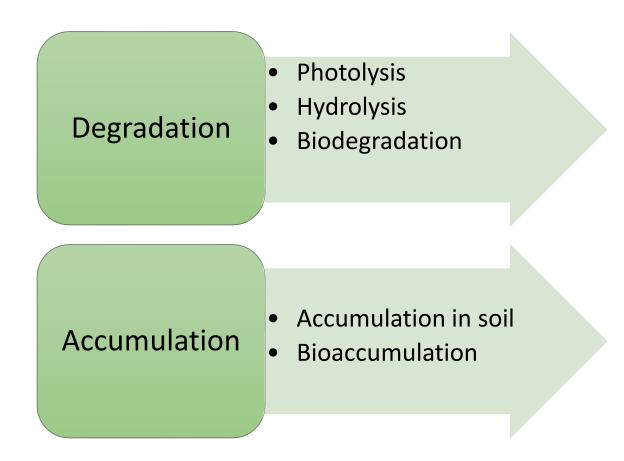

### **Toxicity of Metabolized Lyral:**


Further link to CoA and as a consequence: impair male reproduction.


### **Example from Perfumery Industry:**

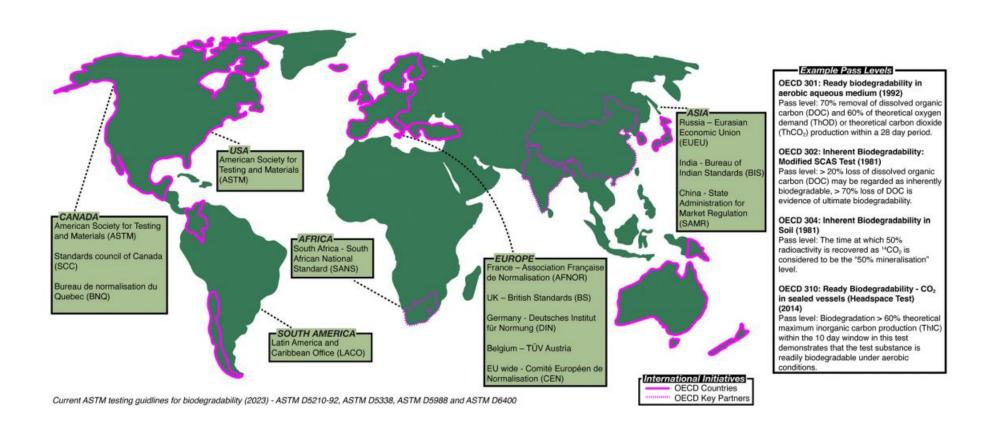
Toxicity of perfumery Ingredients on 2 different Zebrafish 29 ingredients: different physical properties, structures

Based on Verhaar categories



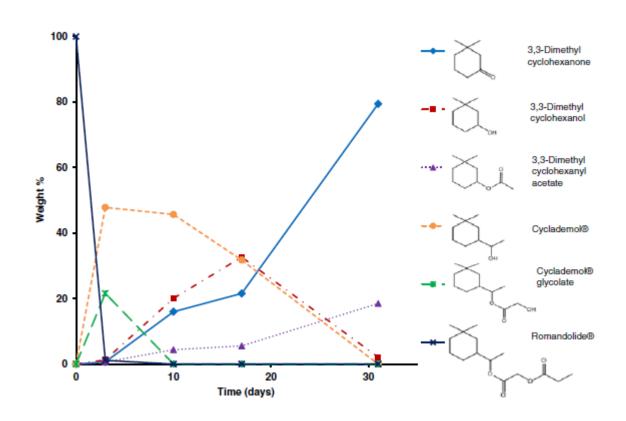


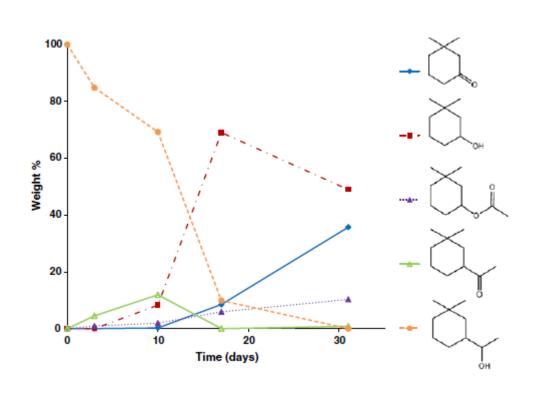




https://www.nps.gov/subjects/air/sources.htm

### **Biodegradation/(Bio)-Accumulation Score**



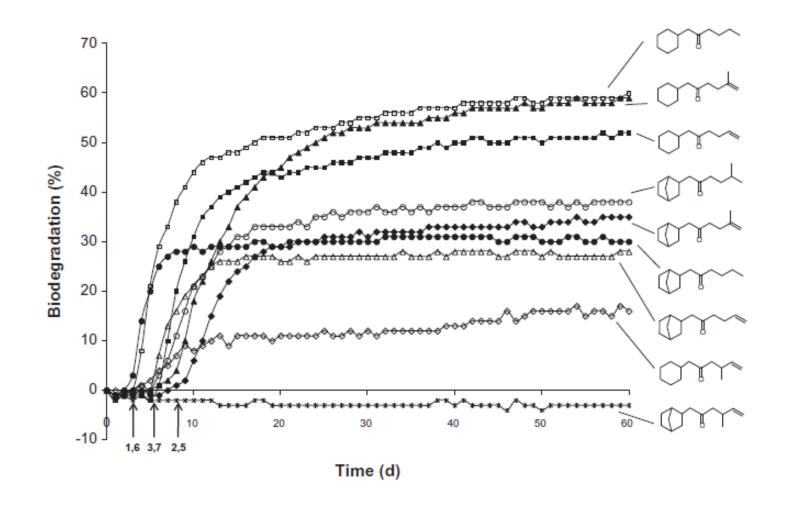

Koller, G. et al. Assessing Safety, Health, and Environmental Impact Early during Process Development Ind. Eng. Chem. Res. **2000**, 39, 960.


#### The global regulatory landscape for assessment of biodegradation



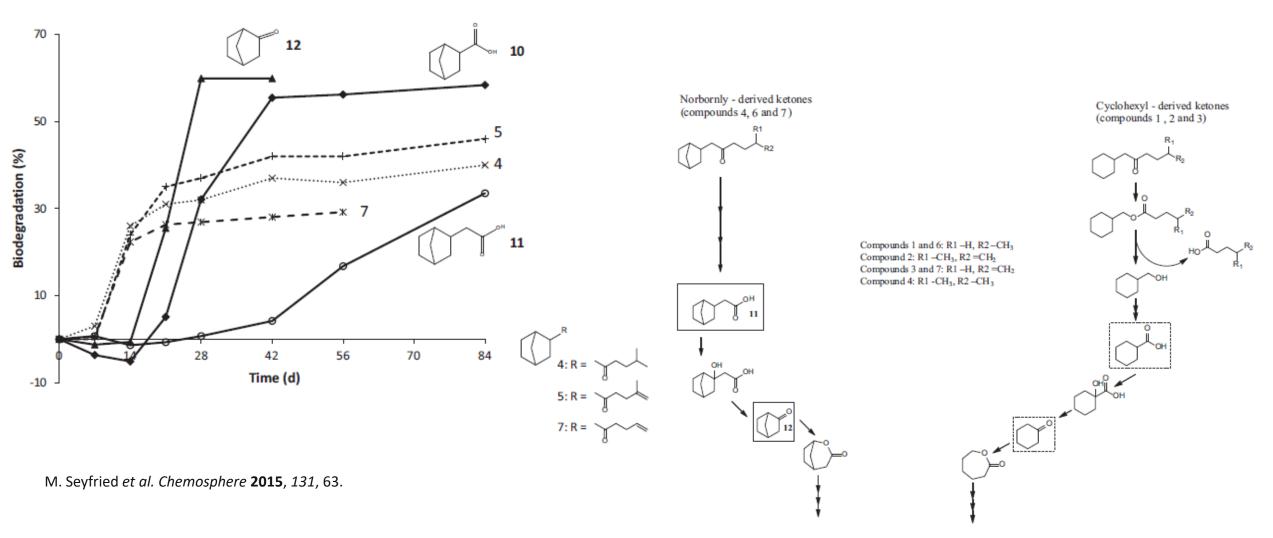
Chem. Soc Rev. 2023, DOI: 10.1039/d3cs00556a

# **Example from Perfumery Industry:**Acyclic musk Romandolide in activated sludge; OECD Screening tests

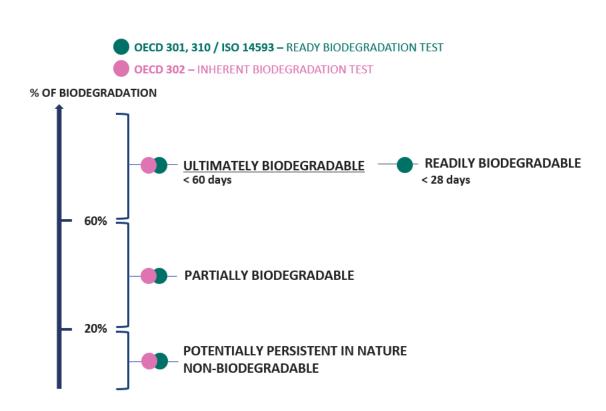





Seyfried, M et al. Environ Sci Pollut Res 2013, DOI 10.1007/s11356-013-2347-9


**Example from Perfumery Industry:** 

Persistence assessment of cyclohexyl- and norbornyl-derived ketones; OECD Screening tests




### **Example from Perfumery Industry:**

Persistence assessment of cyclohexyl- and norbornyl-derived ketones; OECD Screening tests



# **Example from Perfumery Industry: Biodegradation**



### **Energy**

#### 2 major cases:

- Commodity chemicals, in contrast, energy consumption plays a prominent rôle and could be perfectly calculated
- Multipurpose production facilities, energy usage is often not allocated to particular processes.

### **Energy**

Energy Intensity = (Energy consumed in the production process + energy consumed in overhead)/kg of Material Produced

Energy

Total process energy (MJ)
Mass of product (kg)

MJ/kg

M. Bernstein, K. Fonkych, S. Loeb, D. Loughran, State-Level Changes in Energy Intensity and Their National Implications, RAND, Santa Monica, **2003**.

https://www.rand.org/pubs/monograph reports/MR1616.html

### **Energy for solvent recycling**

Energy

Total solvent recovery energy (MJ)

Mass of product (kg)

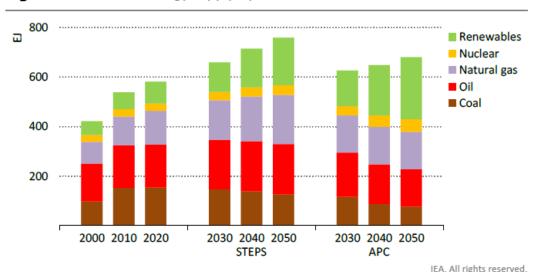
MJ/kg

### **Energy**

Production of Energy produces CO<sub>2</sub>....as a waste often negliged during the E Factor calculation

Not in E-factor: heating, cooling, stirring, pumping, etc.

$$E^{+} = \frac{\sum m(wastes)}{m(products)} \frac{kg}{kg} + \frac{W \times Cl}{m(product)} \left[ \frac{kWh \times \frac{kg(CO_2)}{kWh}}{kg} \right]$$


W = electrical power used

CI = carbon intensity, i.e. the local average  $CO_2$  emissions caused for the generation of electricity.

### But the world does not stand still

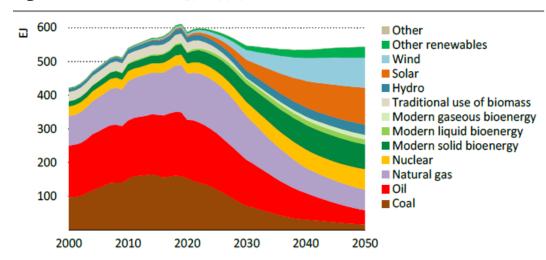

The energy transition will lead to shifts in energy sources ⇒ towards more renewable energy sources.

Figure 1.12 ▶ Total energy supply by source in STEPS and APC



Announced net zero pledges lift renewables in the APC from 12% of total energy supply in 2020 to 35% in 2050, mainly at the expense of coal and oil

Figure 2.5 ▷ Total energy supply in the NZE



IEA. All rights reserved.

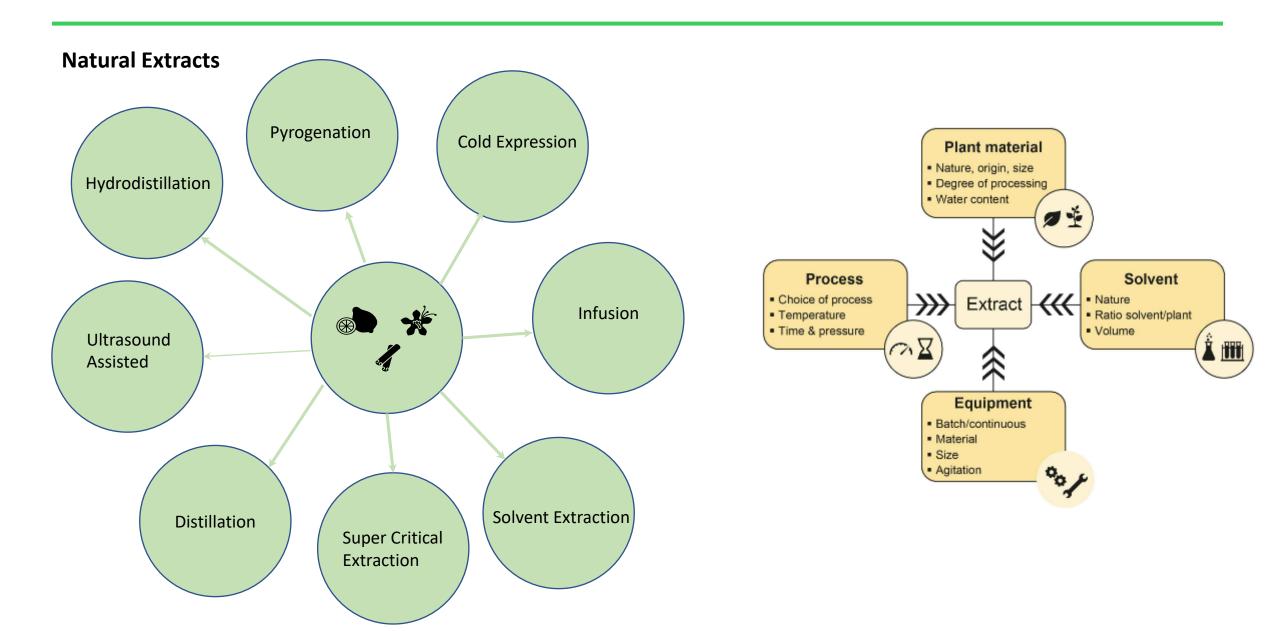
Renewables and nuclear power displace most fossil fuel use in the NZE, and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050

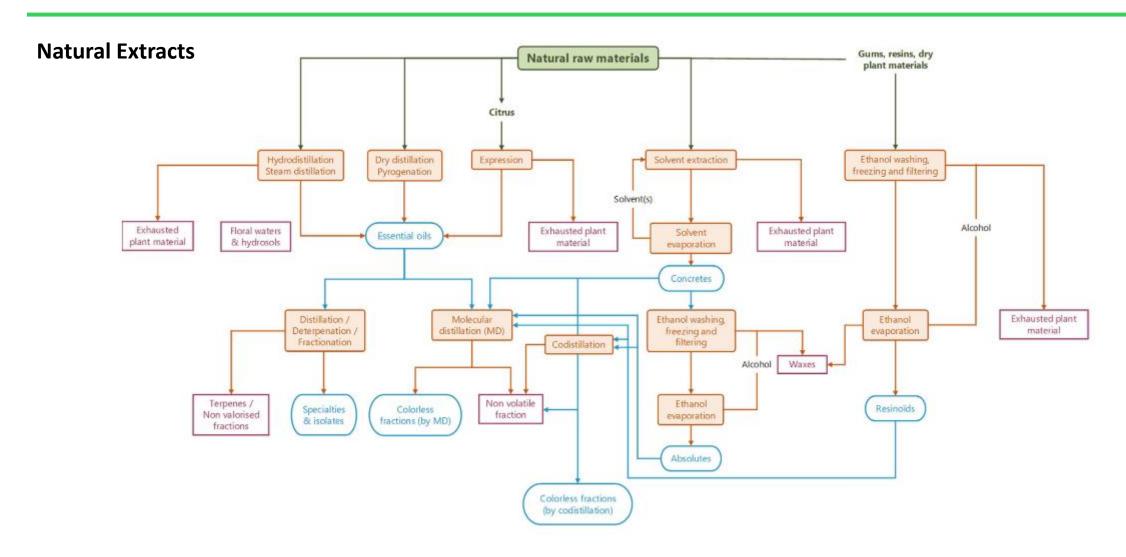


Will that make a difference to Carbon Footprints? How to implement that transition into LCA-models?

### Nagoya Protocole:

Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity


Adopted in 2010 Entered in force in 2014 In 2022, ratified by 137 states

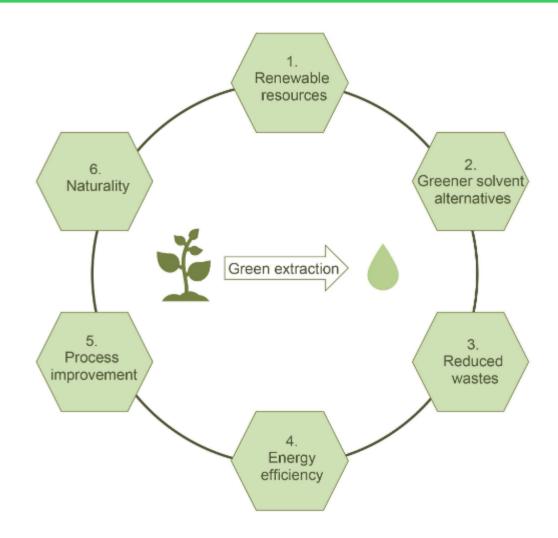

Benefit-sharing obligations Compliance obligations

https://www.cbd.int/abs/doc/protocol/nagoya-protocol-fr.pdf

### **Natural Extracts**

| Category                        | Agrochemicals                                                                                                                                                                                                                                                       | Cosmetics                                                                                                                                                                             | Aroma, Flavours and<br>Nutrition                                                                                                                                                | Pharma                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Market volume                   | 1 Billion USD                                                                                                                                                                                                                                                       | 200 Billion USD                                                                                                                                                                       | 10 Billion USD                                                                                                                                                                  | 107 Billion USD<br>(forecast 2017) [21]                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Market growth                   | Double digit annual growth rate                                                                                                                                                                                                                                     | Double digit annual growth rate                                                                                                                                                       | Double digit annual<br>growth rate<br>Market for nutrition<br>additives decreases<br>Market for aromas grows                                                                    | Double digit annual growth rate<br>Decline in prescription market<br>Growth in over-the-counter<br>market                                                                                                                                                                                                                                                                                                                                                                   |
| Challenges                      | Market dominated by<br>SMEs as well as global<br>players<br>Small volume/low cost<br>products bulk<br>High cost/low volume<br>niche products                                                                                                                        | Significant amount of<br>products with natural<br>claims but up to 75%<br>synthetic ingredients;<br>No uniform and<br>binding standards for<br>natural, fair-trade,<br>organic labels | Low cost products (in<br>the order of 1–10 €/kg)<br>Many products with<br>small volumes<br>(100–1000 kg/a)                                                                      | Most products are OTC<br>Only few blockbusters<br>Restrictive regulatory<br>hamstringed R&D                                                                                                                                                                                                                                                                                                                                                                                 |
| Medium-term<br>research demands | Efficient total process design for SMEs; Integrate process intensification Methods for SMEs and scale-up of infrastructure to fully integrated manufacturers; Energy efficient and low waste processes for decentralised utilization of natural resources [21,22] * | Efficient ways of finding new natural ingredients [23,24]; * Ensuring sustainability of supply                                                                                        | Apply and adopt more often scCO <sub>2</sub> , bio-based solvents *, PHWE Biomass valorization, e.g., carrot, broccoli, artichoke etc. do have 30–80% herbal raw material waste | Speed up of development of herbal raw cell fermentation by omics [25] * Process Analytical Technology for inline-analysis of extraction processes; Parametric defined release at manufacturing of herbal raw extracts; * Homogeneity at production of extracts in large-scale Lyophilisation instead of vacuum-belt drying; Fresh herbal raws instead of dried raw material; HGACP instead of GMP on field incl. extraction media and pomace to be deposited on field again |
| Long-term research<br>demands   | Development of new products                                                                                                                                                                                                                                         | Shift from wild collection to greenhouse or field cultivation in Europe; Energy efficient and low waste processes for decentralised utilization of natural resources [21,22]          | Energy efficient and low<br>waste processes for<br>decentralised utilization<br>of natural resources<br>[21,22]                                                                 | Determination of distribution<br>behaviour of herbal raw<br>ingredients in "single pot<br>model" with herbal raw cell<br>membranes and a<br>gastrointestinal membrane for<br>fast prediction of bioavailable<br>components;<br>Efficacy studies for new herbal<br>raws and products which enable<br>IP protection to cover the costs<br>via patents on the new processes                                                                                                    |






Burger, P. et al. Chem. Biodiversity 2019, 16, e1900424.

### **Natural Extracts**

| Category                             | Foeniculum vulgare<br>L. Mill.                               | Carum carvi L.                             |  |
|--------------------------------------|--------------------------------------------------------------|--------------------------------------------|--|
| Use                                  | Aroma/fragrance                                              | Aroma/fragrance                            |  |
| Target component                     | Anethole (5.3%),<br>Fenchone (2.9%)<br>essential oil (~8% w) | Carvone, Limonene<br>essential oil (~2% w) |  |
| Molecular<br>structure and<br>weight | H <sub>3</sub> CO XO                                         | HOOLON, HICKORY                            |  |
|                                      | 148.2/152.23 Da                                              | 150.22 Da                                  |  |
| Side component                       | Estragole (0.2%)                                             |                                            |  |
| Molecular<br>structure and<br>weight | сно                                                          |                                            |  |
|                                      | 148.2 Da                                                     |                                            |  |
| Location                             | Fruit Oil channels                                           | Fruit Oil channels                         |  |
| Solvent                              | Ethanol [60]                                                 |                                            |  |

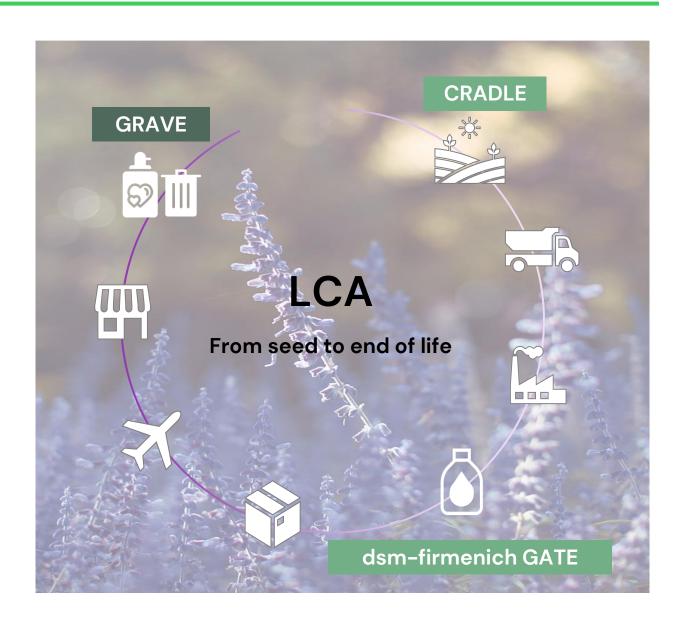
### **Natural Extracts**



#### **Natural Extracts**

**Energy Intensity?** 

Land Impact & Societal Impact?


Extraction Yield? Recycling of Solvent or «Green» Solvent?

Ethical questions & Problems

# Beyond Green Metrics & Sustainability Metrics

### What's next?

Life cycle Analysis/Inventory Carbon Footprint



# Measure today To shape tomorrow

### Precision through data



100% LCA Data on all ingredients in 2024

#### Global standards



Foster Carbon Emissions data access & exchange

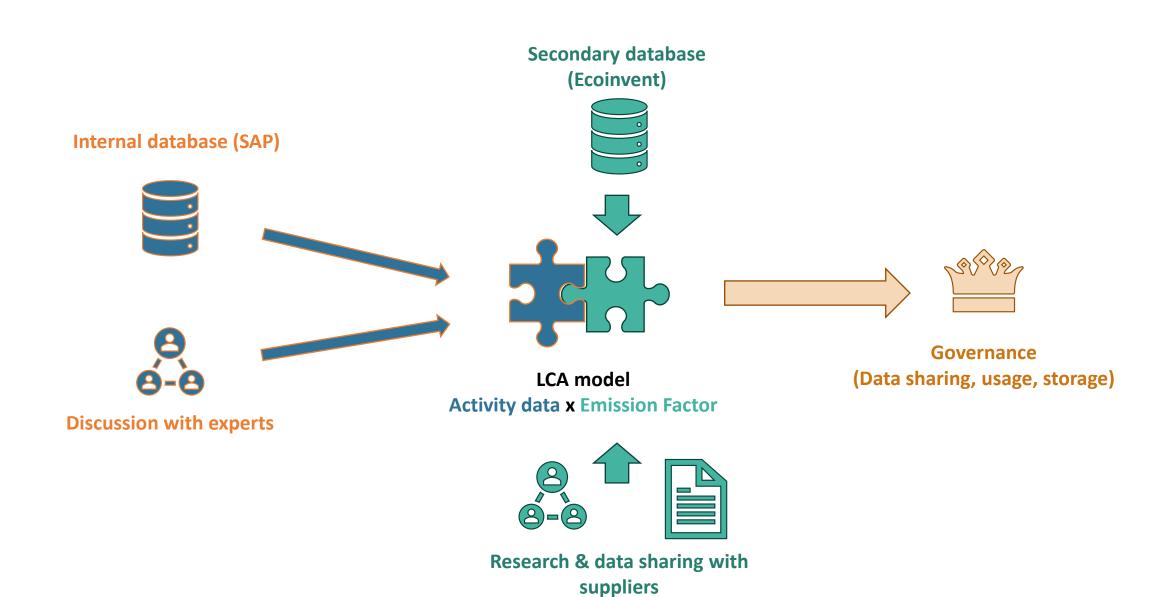
#### Data-driven future



Track, inform & drive progress towards decarbonisation

### Life cycle Analysis/Inventory Definition

#### LCA


Life-cycle assessment (LCA) is a procedure for quantifying the total environmental impact of a product or service across its entire lifetime. This multi-step process includes goal and scope definition, inventory analysis, impact assessment, and interpretation. LCAs are iterative by nature as the plausibility, quality, and completeness of pertinent information changes over time.

#### LCI

Life-cycle inventory (LCI) is the data-collection component of an LCA. Basically, an LCI endeavors to take an account of everything involved in the product or service. LCI considers the "system" at play by tracking all the inputs and outputs involved in making the product or service. The detailed accounting may include raw resources or materials, energy by type, water by source, and the various emissions to air, water, and/or land by substance. An LCI may be extremely complex, involving any number of individual unit processes contributing to relevant supply chains (e.g., the extraction of raw materials, various production processes, transportation, etc.) along with any/all constituent substances (for which there could be hundreds).

LCA is inherently uncertain, and communication of LCA results should therefore account for uncertainty.

### LCA data management: Activity data – Emission factor – Governance



# Carbon Footprint: Order of magnitude

kg CO<sub>2</sub>-eq / kg

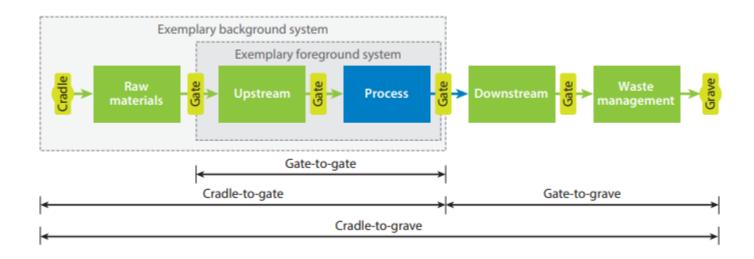
| 0                   | 5 | 10                     | 20                                        | 50                                                 | 100 | 1000                                      | 10000                                             |
|---------------------|---|------------------------|-------------------------------------------|----------------------------------------------------|-----|-------------------------------------------|---------------------------------------------------|
| Acetone             |   | Pyridine               | PDMS                                      | Complex                                            |     | Natural                                   | Extra pure                                        |
| Ethanol<br>Methanol |   | Organo-<br>phosphorous | Special inorganic salt                    | organic<br>chemicals<br>t                          |     | extraction with low yield                 | natural extracts Precious metal catalyst (Pt, Pd) |
| Toluene<br>CST      |   | Vegetable oil          | Medium<br>complex<br>organic<br>chemicals | Essential oil<br>(wood,<br>lavender, casto<br>oil) | or  | EO with specific sourcing Land use change |                                                   |



1 kWh electricity
0,5 kg CO<sub>2</sub>-eq (EU mix)
0,05 kg CO<sub>2</sub>-eq (Solar PV)
20 smartphone charge/discharge



1 day emission for an avg Swiss 38 kg CO<sub>2</sub>-eq / day


14t per year (scope 1/2/3)



Zürich – Auckland in Economy 3'700 kg CO<sub>2</sub>-eq / travel

### **Boundary of the System:**

Modular cradle-to-gate life cycle inventory/assessment methodologies enable one to see inputs and outputs each step of the journey from raw material extraction through each processing step



System boundaries in life cycle assessment. Ideally, all processes are included in a so-called cradle-to-grave boundary. The system boundary can further be divided into foreground and background systems. The foreground system is here defined as the part that is "under control," i.e., within the design space.

### 15 environmental impact categories:

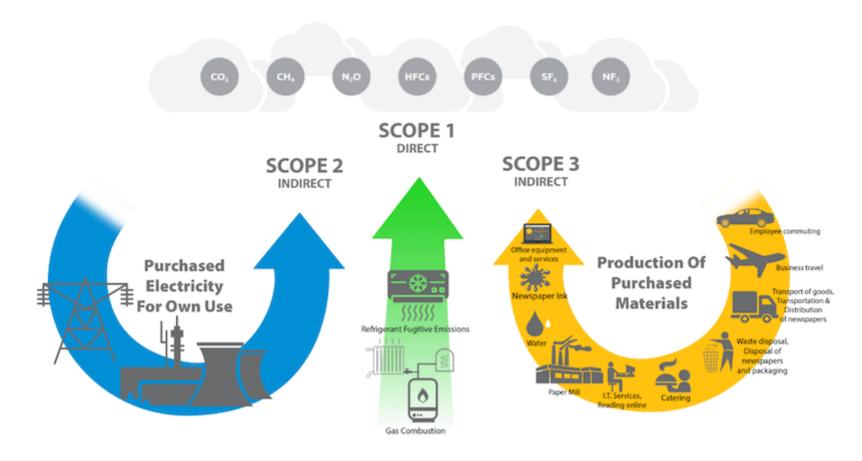
An impact category makes it possible to come to a single metric for climate change

| Impact category / Indicator                              | Unit         | Description                                                                                                                                                                                                             |
|----------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate change – total, fossil,<br>biogenic and land use | kg CO₂-eq    | Indicator of potential global warming due to emissions of greenhouse gases to the air. Divided into 3 subcategories based on the emission source: (1) fossil resources, (2) biobased resources and (3) land use change. |
| Ozone depletion                                          | kg CFC-11-eq | Indicator of emissions to air that causes the destruction of the stratospheric ozone layer                                                                                                                              |
| Acidification                                            | kg mol H+    | Indicator of the potential acidification of soils and water due to the release of gases such as nitrogen oxides and sulphur oxides                                                                                      |

### 15 environmental impact categories:

Different emissions that cause the same impact are converted into one unit that translates into one impact category. For example:  $CO_2$ ,  $CH_4$ ,  $N_2O$ , HFC, PCF, etc.

### An impact category makes it possible to come to a single metric for climate change


| Greenhouse gas (GHG)                  | Equivalent in kg CO <sub>2</sub> -eq of the release of 1 kg of the GHG |
|---------------------------------------|------------------------------------------------------------------------|
| CO <sub>2</sub> from fossil source    | 1                                                                      |
| CO <sub>2</sub> from renewable carbon | 0                                                                      |
| CH <sub>4</sub>                       | 28                                                                     |
| N <sub>2</sub> O                      | 273                                                                    |
| PF <sub>6</sub>                       | 25'200                                                                 |
| HFC-23                                | 14'600                                                                 |

## Carbon Footprint: Order of magnitude

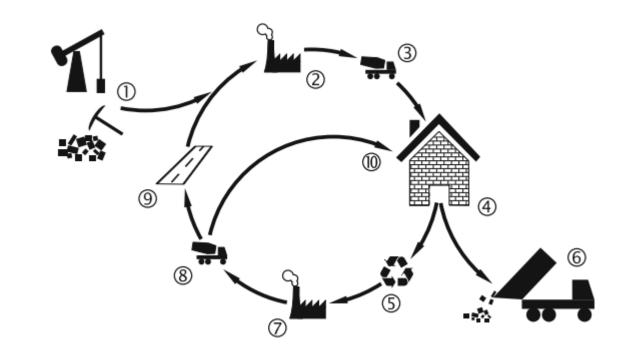
kg CO<sub>2</sub>-eq / kg 10 5 20 50 100 1000 10000 0 **Pyridine** Acetone **PDMS** Complex **Natural** Extra pure Ethanol organic extraction with natural extracts Organo-Special chemicals low yield Methanol phosphorous inorganic salt Precious metal Essential oil Toluene EO with specific catalyst (Pt, Pd) Vegetable oil Medium (wood, sourcing Land **CST** complex lavender, castor use change organic oil) chemicals 1 kWh electricity  $0.5 \text{ kg CO}_2\text{-eq (EU mix)}$ Zürich – Auckland in Economy  $0.05 \text{ kg CO}_2\text{-eq (Solar PV)}$ 1 day emission for an avg Swiss 3'700 kg CO<sub>2</sub>-eq / travel 20 smartphone 38 kg CO<sub>2</sub>-eq / day charge/discharge 14t per year (scope 1/2/3)

# **LCA Analysis**

### Carbon emission Impact



### Green Metrics: Real-Life Tools


### **Sustainable Chemistry**

LCA: Life Cycle Assessment.

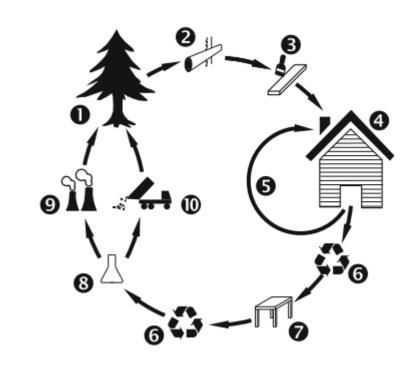
### Life cycle of non-renewable materials:

- Extraction of raw material
- 2. Manufacturing
- 3. Processing
- 4. Use phase
- 5. Recycling
- 6. Landfilling/waste production
- 7. Secondary manufacturing
- 8. Secondary processing for reuse
- 9. Second use phase
- 10. Second reuse phase

Open Access: Biomaterials for Building Skins | SpringerLink



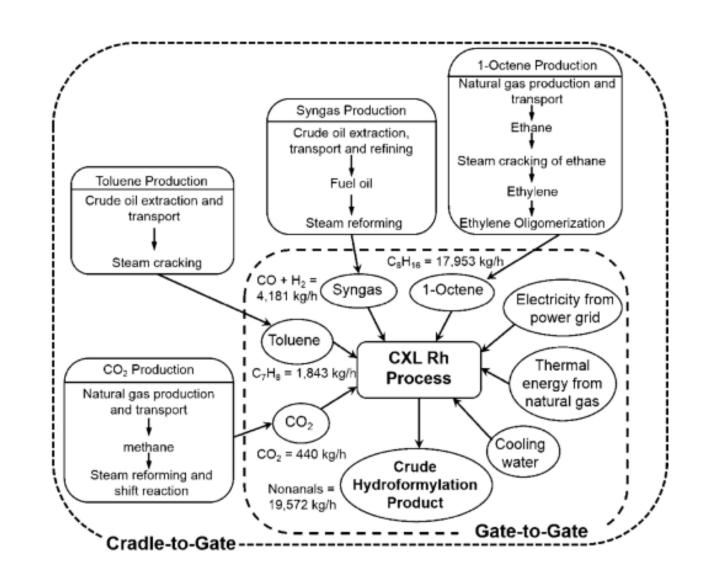
### Green Metrics: Real-Life Tools


### **Sustainable Chemistry**

LCA: Life Cycle Assessment.

### Life cycle of renewable materials:

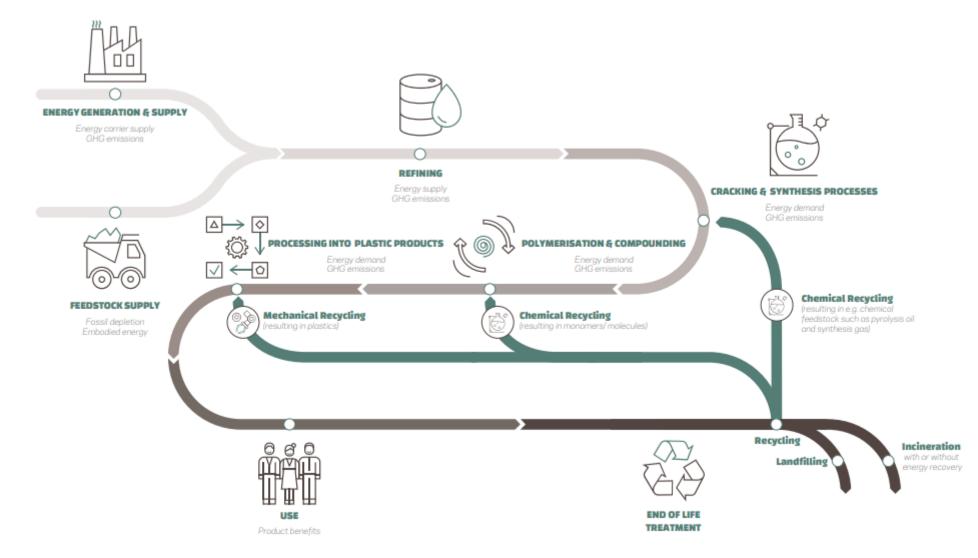
- 1. Harvesting
- 2. Primary processing
- 3. Secondary processing
- 4. Use phase
- 5. Reuse
- 6. Recycling
- 7. Second use phase
- 8. Cascading to tertiary use
- 9. Energy generation
- 10. Landfilling, closing the biological and technical metabolism


Open Access: Biomaterials for Building Skins | SpringerLink



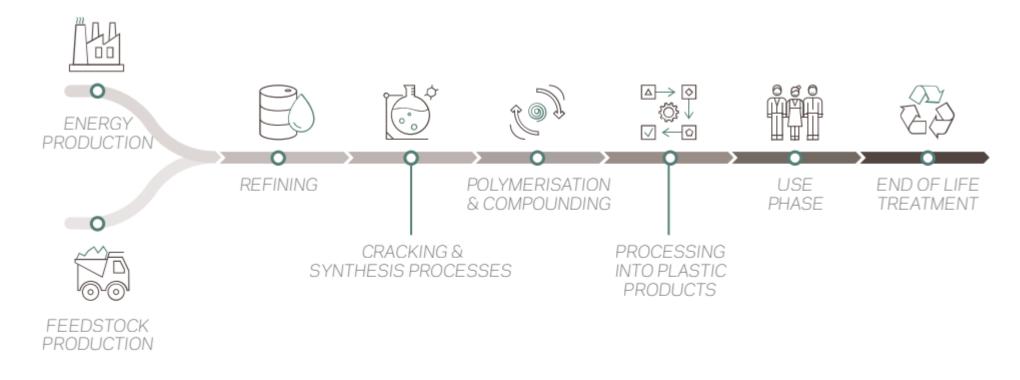
## LCA Analysis

#### **Analysis**


Hydroformylation of Olefin



#### Circular Economy-Recycling

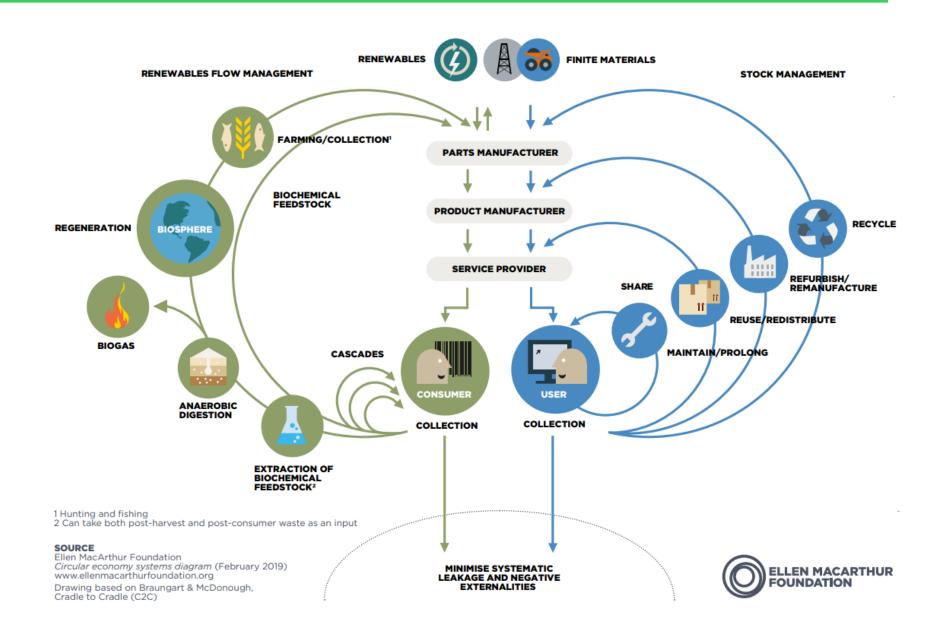

Value chain in polymers: Mechanical & Chemical recycling

https://cefic.org/



## Circular Economy-Recycling

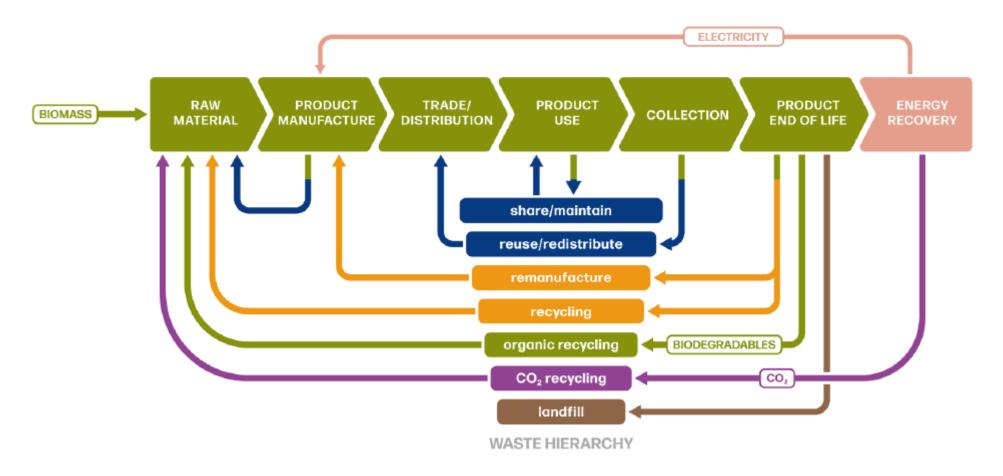
#### Material Flow Analysis




#### mass

https://cefic.org/

**CO<sub>2</sub> emissions** 

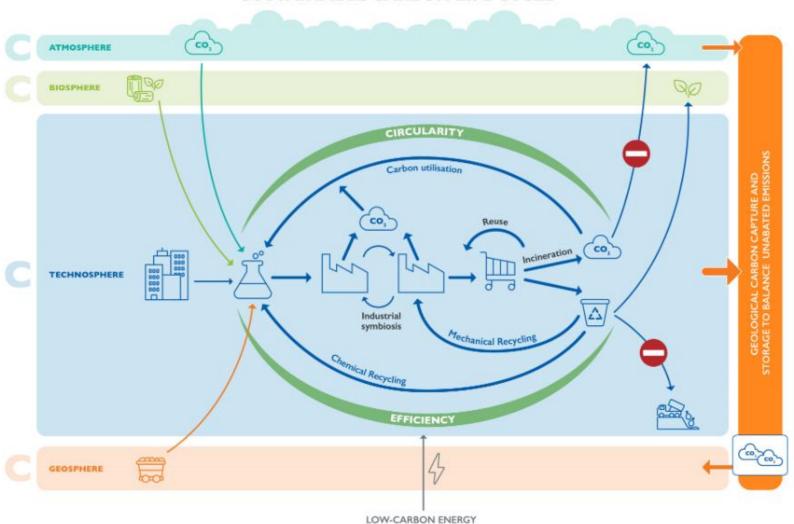

## Circular Bioeconomy



The Butterfly Diagram: Visualising the Circular Economy (ellenmacarthurfoundation.org) https://renewable-carbon.eu/graphics

#### Circular Bioeconomy

Value chain in polymers: Mechanical & Chemical recycling




https://renewable-carbon.eu/graphics

Circular economy action plan - European Commission (europa.eu)

# Sustainable Carbon Cycles

#### SUSTAINABLE CARBON LIFE CYCLE



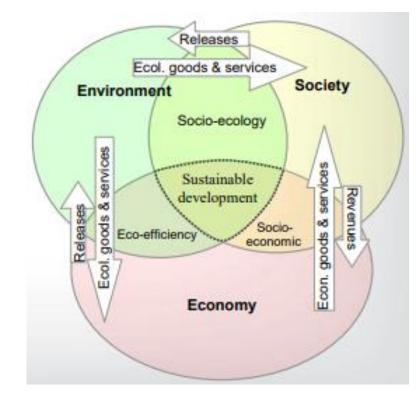
Critical Review:

Dees, J. P. et al. Green Chem., 2023, 25, 2930.

https://cefic.org/

## **Green Metrics & Sustainability**

#### **Global overview:**


#### **Green metrics:**

Tools to compare different processes but no absolute values Not possible to conclude that a process is green!

Still a lot of work to be done: harmonize all the metrics, rules to use them What about Societal Impact, Justice, Intergenerational Justice, Boundaries, etc.

What are the values to prioritize to include/exclude?

After CO<sub>2</sub>: Water,...



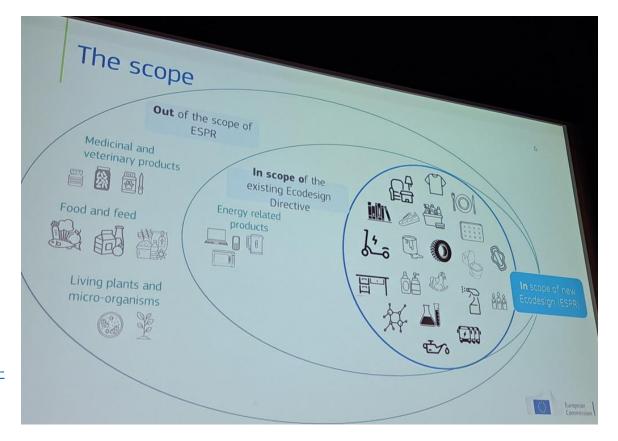
https://cfpub.epa.gov/si/si public file download.cfm?p download id=542328&Lab=CESER (accessed August 23, 2023).

Sheldon, R. A. ACS Sustainable Chem. Eng. 2018, 6, 32–48.

Diverse values of nature for sustainability, Nature 2023, 620, 813.

Kunming-Montreal Global Diversity Network: https://www.cbd.int/gbf/

For example: Europe


**NEW Ecodesign framework**: ESPR (replace the Eccodesign) in force 2025 based on 2024 numbers.

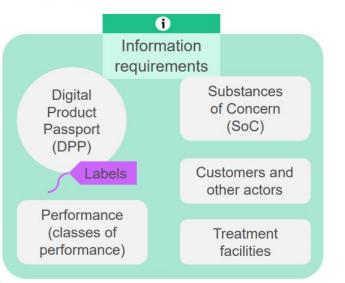
And **CBAM**: **C**ross **B**order **A**djustment **M**echanism cement, iron & steel, aluminum, fertilizers (ammonia, urea, nitric acid, ammonium nitrate) and electricity.

January 2030: Evaluation if chemicals and polymers.

https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/sustainable-products/ecodesign-sustainable-products-regulation en

https://www.reachlaw.fi/the-ecodesign-for-sustainable-products-regulation-espr/




For example: Europe/NEW Ecodesign framework:

Link to EU presentation-slides deck

<u>Cosmetics - European Commission (europa.eu)</u>

#### Ecodesign requirements

Product specific or horizontal







Using prospective LCA models: IAM-LCA coupling flow [Integrated Assessment Models] Future scenarios such as the socioeconomic pathways are used as inputs together with e.g. ecoinvent

**Step 1**: Ecoinvent data are connected to Integrated Assessment models (IAMs) by creation of a superstructure database.

**Step 2**: connection between ecoinvent and additional inventories, that represent emerging and future technologies.

**Step 3**: Export of the database into a common LCA software (Simapro, Brightway2)

Step 4 and 5: Producing LCA resource and environmental indicators (and feeding back into IAM).

For example: Europe

**Digital Product Passport (DPP)**:



https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/sustainable-products/ecodesign-sustainable-products-regulation\_en

https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/sustainable-products/about-sustainable-products en

For example: Europe

#### **Digital Product Passport (DPP)**:



- > The new "Digital Product Passport" will provide information about products' environmental sustainability.
- This information will be easily accessible by scanning a data carrier.
- It will include attributes such as the durability and reparability, the recycled content the availability of spare parts of a product.
- It should help consumers and businesses make informed choices when purchasing products, facilitate repairs and recycling and improve transparency about products' life cycle impacts on the environment.
- > The product passport should also help public authorities to better perform checks and controls.